
|

CONTRACTOR

REPORT

NASA CR-968

¢,/"Ji

z

GPO PRICE $

CFSTI PRICE(S) $

Hard copy (HC)

Microfiche (MF)

ff 653 July 65

A STUDY OF THE CRITICAL

COMPUTATIONAL PROBLEMS

ASSOCIATED WITH STRAPDOWN

INERTIAL NAVIGATION SYSTEMS

Prepared by

UNITED AIRCRAFT CORPORATION

Farmington, Conn.

for Electronics Research Center

,_ ACCESSION NUMBER) (THRU)

o _-A_E_ ...... _oD_i/:-_--
,z /

(NASA CR OR TMX OR AD NUMBER) (CATEGORY)

NATIONALAERONAUTICSAND SPACEADMINISTRATION • WASHINGTON,D. C. • APRIL1968



F

NASA CR-968

A STUDY OF THE CRITICAL COMPUTATIONAL PROBLEMS

ASSOCIATED WITH STRAPDOWN INERTIAL

NAVIGATION SYSTEMS

Distribution of this report is provided in the interest of

information exchange. Responsibility for the contents

resides in the author or organization that prepared it.

Issued by Originator as Report No. SCR 328-I

Prepared under Contract No. NAS 12-91 by

UNITED AIRCRAFT CORPORATION

Farmington, Conn.

for Electronics Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Clearinghouse for Federal Scientific and Technical Information

Springfield, Virginia 22151 - CFSTI price $3.00



pRF,_CED]b-"G F'f.GT: :._=_:C.,'.'I._,_OT FILMED.

FOREWORD

This final report was prepared by United Aircraft Corporate Systems Center

for NASA Electronics Research Center as fulfillment of Contract No. NAS 12-91.

The work described in this report was initiated by United Aircraft Corporate Sys-

tems Center under a company funded research program and extended and docu-

mented herein for NASA Electronics Research Center under the above-referenced

contract. The principle goals of the contract are: (1) to develop analytical models

of the computational errors associated with the computational process of strapdown

inertial navigators and (2) by using these models, to establish the computational

requirements of strapdown navigators for the various phases of flight of typical

missions. This report is divided into two volumes. The first volume describes

the analytical models of the computational errors of strapdown navigators and

reports upon specific hardware application studies and computational requirements,

The second volume*describes in detail the digital computer program developed

under this program that permits rapid evaluation of strapdown associated computa-

tional errors for restrained sensor systems.

* CR-86022
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I. SUMMARY

This report presents a detailed and comprehensive evaluation of the computational

processes of strapdown inertial navigators; the computational requirements and error

sources are defined and analytic models of the computational errors are developed.

The analytic computational error models were developed with the aid of detailed digital

simulations of the flight environment, the strapdown inertial sensors, the computer

hardware and the numerical processes. The strapdown computational processes

investigated were the determination of attitude, the resolution of accelerometer data

into the inertial frame and the computation of position.

The design and performance evaluation of the strapdown computational process

is shown to be simplified by its separation from specific sensor mechanizations. All

strapdown sensor mechanizations can be placed into two classes. Class 1 contains

those sensors whose input axes are restrained relative to the vehicle and Class 2

contains those sensors whose input axes are free of vehicle orientation. The computa-

tional process for all sensor mechanizations within a class are identical. Table I-I

lists the sensors of each class that are currently being investigated in the guidance

industry. Within each class only a description of the sensor loops' digital information

output (frequency response, frequency of data availability and resolution or quantization)

is required to evaluate its effect on computational accuracy.

For each class of sensor mechanization, the critical computational problems have

been isolated and each computational error source and its characteristics have been

separated from the total system error. Table I-H lists the parameters that have been

determined to effect computational accuracy. Their effect on computational accuracy

is precisely described by analytic models that have been developed for linear and

angular environments, both discrete and random. These computational error models

permit the performance evaluation of strapdown computational processes to be

accomplished for any arbitrary set of mission requirements and environments without

employing additional digital simulations of the strapdown system.

The critical computational problems associated with strapdown inertial navi-

gators are defined and discussed in the main body of this report. Substantiating

data and mathematical derivations are presented in appendices A through G.

The attitude computational error associated with the numerical integration of

the angular kinematic equations necessary with restrained gyros is characterized by

four distinct regions of error as shown in Figure I-l:

(i) Round-off - the error is inversely proportional to computer word length

(2) Quantization - the error is proportional to gyro output pulse weight

(3) Truncation - the slope is proportional to the order of the numerical

integration scheme

(4) Bandwidth limited - the region in which the computational frequency is less

than the angular motion frequency.

T-I



Of primary importance for a restrained gyro attitude reference system is the

development of a gyro data processing technique that eliminates the interrelated

problems of commutativity and sensor quantization and permits the use of any
order integration scheme to minimize the truncation error. Such a scheme is

developed herein.

The individual strapdown inertial sensor loops are coupled only in the digital

data processing; therefore, an investigation has been made of the following sensor

utilization techniques, which significantly enhance the strapdown navigator's mission

flexibility, accuracy and reliability for small increases in the computational

requirements:

(i) Shifting of the dynamic operating range of torque-rebalanced
sensors as a function of environment to improve performance and

reduce power during periods of low level environments.

(2) Staggering the sampling of the sensors in time and performing

resynchronization within the computer to reduce the weight of
the interface electronics between the sensors and the computer.

(3) Using a single gyro properly oriented relative to a basic triad

of gyros to achieve the same reliability as obtainable with a

completely redundant sensor package.

Utilizing the developed analytical models of the computational errors, a digi-

tal computer program (described in Volume II*of this report) has been developed

that permits the evaluation of the effect that a computational process has upon attitude,

velocity and position accuracy. Evaluated in this program are the computational func-
tions of the attitude determination process and the coordinate resolution of accelerometer

data for restrained sensor systems. This program has been utilized to parametric-

ally define computational requirements in terms of performance for a boost-parking
orbit, injection and coast-translunar injection mission. This study indicates the

trends of computational requirements with variations in required accuracy.

* CR-86022
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TABLE I-II

PARAMETERS AFFECTING STRAPDOWN COMPUTATIONAL ACCURACY

• Vehicle Angular & Linear Motion

Amplitude

Frequency
Phase

• Sensor Loop Characteristics

Bandwidth

Data Rate

Quantization

• Computer Hardware

Word Length

Speed

• Computational Algorithms

,
Sensor Data Processing or Filtering

Order of Numerical Integration Schemes

Order of Transendental Approximations

Frequency of Solution

* Extraction of angular rate or specific force from their respective integrals

provided by the inertial sensors

I-l,



APPENDIX F

TRUNCATION ERROR MODELS FOR RANDOM VIBRATORY

ANGULAR MOTIONS

An actual flight environment will consist of low frequency deterministic

motions superimposed on a random background of vibratory motions; therefore, the

computational errors introduced by vibratory motions must also be considered.

As described in Section IV A the attitude matrix computational truncation error

for the input of a single systematic motion can be described in terms of an angular

drift rate whose magnitude is a function of the computer and integration processes.

For a sinusoidal input, the truncation error can be describedby the following

equation

= f kfibsind _(_c)c (F-i)

where k, b the angular amplitude exponent, and d, the frequency ratio exponent,

are dependent upon the order of the integration scheme; f is the number of inte-
c

grations performed per second, while f and B are the frequency and amplitude of the

sinusoidal motion. Table IV-I lists these coefficients.

Digital simulations have shown that the attitude computations possess the prop-

erty of superposition such that equation (F-I) can be expanded to describe multiple,

simultaneous sinusoidal inputs about an axis of rotation fixed with respect to the

sensor package:

m= k f X _ sin (F-2)

e _= i _ \2-_c

Because of the superposition property, the attitude error for an angular random

environment of fixed spacial orientation described by an angular rate power spectral

density over a frequency range can be analytically derived in closed form. The

derivation and the comparison of it with the results of digital simulations follows.

Equation (F-l) can be written in terms of the maximum rate amplitude rather

than maximum angular amplitude for a sinusoidal oscillation at frequency, fi:

F-1



.b

(fi)_ c sin

(2 fi)b \2fe/
(F-3)

The maximum angular rate amplitude at a frequency fi can be estimated

from the power spectral density describing the random angular motion, qS,by

,2
(F-4)

Substituting equation (F-4) into (F-3) yields

b
f k - uf.

2 d
(_) . c [ 2_b(fi)Af ] sin (2---_)

(2_fi)b c

For rectangular, 2rid order Runge-Kutta and 4th order Runge-Kutta this

equation becomes

fk _f.

CR (fi)- c R i
2_2f. 2 qS(fi)Afsin2 (2)_-c) kR= 117

I

(F-5)

(F-6)

_ fck2 _52 7r fi =
C2 (f[) 47r4f4 (fi)(Af)2 sin4 (2T--)c k2 .I

I

(F-7)

fck4 7r fi

6 4(fi) 4_4{ 4 _2(fi) (Af) 2 sin 6 (__) k 4 .05
e1

(F-S)

F-2



Replacing the summation process of equation (F-2) by an integration process

over all frequencies, the total error for the rectangular integration becomes

fckR f
-- _ / o __ sin2( ) dfCR 2_.2 f2

e
o

(F-9)

By a change in the integration variable (• = _f/2 fc) , this equation can be
simplified to _ f

O

2f

k R fo c 2f "r 2____C._.c) sin T drCR =4-#- ¢( 2
T

(F-IO)

By the same change in the variable (Af to AZ), the errors for the 2nd and

4th order integration processes at frequency fi, (Equations F-7 and F-S) become

4
2f T k 2f 7. sin (7i) 2

• c i 2 q_2 e_______l (A _)C2(--_) - 2 ( _ ) 4
16f 7r 7.

e l

(F-II)

2f "r k 2f T sin6('ri) 2

C4 ( e_ i ) _ 4 2 q52 ( _c___ i) 4 (AT)
16f _ "r.

c 1

(F-12)

The summation process for the total computational error (Equation F-2) can

then be expressed as

2

k n 2f _. sin (7i)- 2 c i 2

C2 - 2 X [ qS(--7---) 2 ) A_]
16f _ i=1 _.

c 1

(F-13)

•-- k n 2fiv_____i sin3(r i) AT]C4 _ 4 2 E [ q_( )
16f 7r i=l 2

C T.
l

2
(F-14)
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These expressions can also be expressed as a double summation, that is functionally

n nn {
= 2 0 i_j

C = E gi = E E gigjA 7 iA 7. 6 .; 5 = ' (F-15)
i=1 i=1 j=l ] ij ij 1, i=j

Functionally, this double summation behaves like a double integral with the

variables of integration related by a delta function. The error equations (based

upon functional analysis) can then be expressed as

k 2f u

_ 2 - 2 ff _16 7r2f qb( 7r
c

2 2f v 2
__ sin v

sin____qb(U _rc ) _ 6 (v-u)dvdu
u v

(F-16)

2f u 2f v 3

k4 ff4)( e ) sin3u ( c sin v-- 5 (v-u)dvdu
(F-17)

with this assumption validated by the favorable agreement between this model and

the simulation results to be presented below.

Integrating first with respect to ( v ), the above equations have value only

at ( v ) equal to ( u ) and by definition of the delta function,

x (u) =f6(v-u) x (v) dv (F-IS)

become

_f
o

k r. 2f c _b2 2f uc sin4(u)

C2 - 2 Jo (_ ) 4 du16_2f u
c _f

o

k 4 2f c 2 2f u sin6(u)

-: J_o -2--c ) _- _ ( _ 4
C4 16_2f u

c

du

(F-19)

(F-20)
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In applying equations (F-10), (F-19), and (F-20), the power spectral density

input to the computer is that passed on to it by the gyro

(F-21)

where Gg is the gyro transfer function, Gs is the sensor package transfer function

and _'(f) is the power spectral density at the sensor package mounting base.

In general the integrals involved in the above equations must be evaluated

numerically. Figure F-I evaluates the integrals of the above equations for the cases

in which the power spectral density is constant over the entire frequency range.

The digital simulations used in verifying these results were made by approximating

power spectral densities with multiple discrete sinusoids applied simultaneously. The

discrete frequencies were chosen from a table of random numbers after first assuming

a band limited power spectral density. The spectrum was then divided into st_b-bands,

each containing one of the discrete frequencies, and the amplitude of each of the ap-

proximating sinusoids was determined by equating the power content to that in the sub-

bands containing them. Runs were made for several sets of approximating sinusoids

with power spectral density band limited to 50 and 100 cps (f). The magnitude of the
o

power spectral density employed were 0.55 and 1.1 (rads/sec)2/cps, extremely large

values compared to flight values. A large magnitude was selected in order to empha-

size the truncation error relative to the round-off error. Frequency ranges of 50

and 100 cps motion input were selected as being typical of the bandwidth of restrained

gyros. Figures F-2 and F-3 present the analytical results and simulation data for

comparison.

Figure F-2 displays the computational error for a fixed angular environment as

the order of the integration scheme and the frequency with which the equations are

solved are varied. Figure F-3 displays the computational error for a fixed integration

scheme, 2nd order, as the magnitude and frequency range of the angular environment

and the computational frequency are varied. Both figures demonstrate good agreement

(slopes and relative magnitude between error curves) between the theoretical and

simulation results for all cases in which the computational frequency (fc) is higher than

the upper frequency limit of the vibratory input (fo). The principal difference between
the theoretical and simulation results for fc > fo is a constant factor in the truncation

region: 2.5 for the 4th order scheme; 3.5 for the 2nd order scheme and 3.3 for the

rectangular process. Figures F-4 and F-5 display the same results as contained in

Figures F-2 and F-3 but with the theoretical results multiplied by the cited constants

at all frequencies in the truncation region. In these figures, the agreement between

theoretical and simulation results discussed above is readily apparent.

Additional comparison of the theoretical and simulation results with regard to

the exponents of the computational frequency, the amplitude and the frequency bandwidth

F-5



l t'..-

t_

-_o

oa t--4

"I¥_IO_±.t,,II XH_L _O _I'I"IVA

ZO
r-I

1"4

O,1
i...4

oo

e..O

O,1

r,O

t::t
O
oF.,I

r-4
I

tm
...._

F-6



10 6

105

\
\

lo4 -__ \

= 0.55 (RAD) CPS, O< F< 100 CPS
SEC

,03-\ _ __CT_NO_L_

,o,. "\ \,_ _, /\ \\ N_'_\__'X"O,_f,2NDOR.ER r

101 _ t

100 4TH ORDER X_ /

10-1

10 0 101 102 103 104 105

FC (CPS)
67-128

Figure F-2 Comparison of Theoretical and Simulation Results for

Single Axis Random Motion

F-7



10 4

10 3

0_

10 2
"o

1
10

10 0

I

|

SIMULATION LEGE ND

rr\

|
o

( R'etD )-/CPS. O< F< 50CPSI-I _ = :.1o --
SEC

RAD
9 (, ,

X e, = 0.55( .--TgU-)-/-ts'°< r<50cps

,)

O _ : 0.55(--RAD )-/CPS, O< F < 100 CPS
SEC

> ,,',,,',',
"k "Q\, k

O

\

_rI _EO_ICALLEO_N)___ \

,5 0.55 (_)2//C'PS. O< l" lO0 i'll--"

t

set." /

10 0

Figure F-3

101 10 2 i0 3

FC (CPS)

67-130

Comparison of Theoretical and Simulation Results for

Single Axis Random Motion

F-8



106

10 5

RAD 2.
¢ =0.5 (s-E-c-) /cps

O< f< i00 CPS

104

102

101 _l 0 /4TH ORDER _

100 _/_]

-1
10

100 101 102 103 104 105

FC(CPS)

67-127

Figure F-4 Comparison of Adjusted Theoretical and Simulation

Results for Single Axis Random Motion

F-9



10 4

RAD 2
|_ | _ _ _b =1 1 (_) /CPS

1o3 i \ x. \,. o< F < socPs --

I 0 RAD

¢: .55(_) /cps _.. _

I01 q5:0.55 (_-'_)/CPS __

100

100 101 102 103

FC (C PS) o7-1z9

Figure F-5 Comparison of Adjusted Theoretican and Simulation

Results for Single Axis Random Motion

F-lO



of the vibratory input are presented in Tables F-I and F-II. Table F-I presents the

theoretical model asymtotic limits for the computational frequency both higher and lower

than the maximum vibratory input frequency as simplified for the special case of con-

stant power spectral density (_b) investigated. Table F-II compares the theoretical and

simulation results for the exponents of fc, ¢_, and fo" As would be expected from the

prior visual inspection of Figures F-4 and F-5, good agreement is obtained in the

region of fc >.1 fo, which is the principal frequency region of concern in the design of

the computational process. More precise evaluation of the exponents than is presented

via digital simulations would require additional runs.

Two possible explanations of the failure of the theoretical model for fc < .1 fo

are: (1) the lack of a complete error model for discrete sinusoidal inputs for

fc < fo as has been noted for the rectangular integration process (Section IV. A. 1) or

(2) the failure of the superposition characteristics in this region that has been assumed

and verified for fc > fo.

A similar analysis was performed for coning motion in a random environment.

In this analysis a worst case was assumed, i.e., that of identical power spectral

densities, _(f), of the vibrations on both axes with a ninety degre_ phase shift at all

frequencies. In practice, coning if it occurs, will occur at discrete frequencies or

in a narrow frequency region in which a vibratory coupling mechanism occurs, i.e.,

control systems, structure or sensor housing transmissibility breakdown. For coning

caused by discrete inputs the drift rate in the truncation region (fo/fc < . 8) may be

expressed as

C(f) = k f12 (f) fa fl-a (F-22)
c

o

where k and a are functions of the integration scheme. With fi = fi/2_f and using
equation (F-4), this becomes

k a-2 l-a
2 q_ (f) f f Af (F-23)c

27r

In a similar fashion as before

(_ _ k 1 f'8fc fa-2
27r 2 fa-1 _b (f) df (F-24)o

For frequencies of input above fo/fc >. 8, the drift rate becomes independent
of the integration scheme
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TABLE F-I

COMPUTATIONAL TRUNCATION ERROR FOR CONSTANT ANGULAR POWER

SPECTRAL DENSITY

Integration Scheme

Rectangular

2nd Order

4th Order

f
o

-- < 1
f

c

-- k

8

-: k2 2
C =-- _b

32_

k 7r

__ 4 2
384 q_

Computational Frequency Region

__°>1

Theoretical Model

f k Ro

e

f
c

Equations

f
o

f2
c

3
f
o

4
f
c

k

__2 q52 1
48_ f

c

k
4 2 1

c
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TABLE F-II

COMPARISONOF THEORETICAL& SIMULATIONRESULTSFOR
SINGLEAXISRANDOMMOTION

(a) Exponentof ComputationalFrequency

Integration Scheme

ist order

2ndorder

4th order

ComputationalFrequencyRegion

f >f
C O

Theoretical

Exponent

Simulation

Exponent (1)

-1 -1

-2 -2

-4 -3.7

f <f
c o

Theoretical Simulation

Exponent Exponent (2)

-1 -1.2 to -1.9

-1 -1.3

(b) Exponent of Amplitude (_b) and Frequency Band (fo)

of the Random Motion for Second Order Integration

Error Amplitude Ratio

Exponent of fo

_(¢ = o. 55, fo = 50)

C(¢= 0.55, f = i0--O)
O

Exponent of q_

C(_= 1.1, fo = 50)

5(,= o.55,fo= 50)

Computational Frequency Region

>f f <f
0 c o

f
c

Theoretical Simulation

Exponent Exponent (1)

1 .9

2 2

Theoretical Simulation

Exponent Exponent (2)

0 0

2 2

(1) Not including the transition region from truncation to roundoff

(2) .1 fo < fc < fo
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j2(f)
(f) = 2 f

7]"

Again approximating the rate amptitude in terms of the power spectra[ density,

total drift rate is

f

C =-_= 130_f ,(_f df (F-26)
.8f

a

These equations are summarized for three integration schemes in Table F-III.

As before, the power spectra[ density in the above equations is that of the environ-

meat as seen by the computer after it is modified by gyro and sensor package trans-

fer functions.
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TABLE F-III

COMPUTATIONAL ERROR FOR RANDOM VIBRATORY CONING MOTION

Integration Scheme

Rectangular

2nd order RK

4th order RK

f/f <.8
o c

_ 327 1 f"
2 f .J

2_ c 0

C

C

8f"

_b(f)df

• 8f

408 f-Tf0 f_(f)df2
2_

c

• 8f

646 1 /f32 4 ¢ (f) df
2_ f

c 0

f/f >.8
o c

f

.8f
C
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APPENDIX G

DERIVATION OF SENSOR ASSOCIATED ERROR MODELS

A. Introduction

Several error sources in a strapdown system are associated with the sensors that

produce a distortion of the vehicle motion information that is passed on to the computer.

These error sources must be treated on a system basis and they must reflect the im-

pact they have upon the error induced in the knowledge of attitude by the computer pro-
cessing erroneous data. Three such error sources, finite gyro bandwidth, unmatched
gyro loop frequency response and gyro output axis acceleration sensitivity, are dis-

cussed in this appendix and analytic models of the errors produced by each are
derived.

B. Strapdown System Navigation Errors due to the Finite Bandwidth of the Gyros

The finite bandwidth characteristics of the strapdown gyros cause two navigator

errors. First is the attenuation, beyond the bandwidth of the gyro, of the random

angular environment applied to the sensor package which represents true angular

motion of the accelerometer input axes that should be followed by the gyros in order
to correctly resolve the accelerometer outputs into the inertial frame. Second is the

error induced if vehicle coning motion occurs at frequencies beyond the bandwidth of

the gyros. The two sinusoidal rate components will be attenuated by the gyro loops and

not seen by the computer while the constant rate component (zero frequency} will be
passed on to the computer. This will result in a drift rate of the attitude reference

equal to the value of the constant rate component. In either case, the attitude compu-
tational process, even if it were perfect, cannot undo the error that has been created.

A method of evaluating the gyro amplitude attenuation errors has been developed and

is presented.

The mean square angular amplitude of the sensor package and hence of the
accelerometer's input axis in the presence of an ergodic random angular environment

that is defined by a power spectral density of angular rate is

oo [G O ¢o)12

o2 :__L_l f s
2 w -oo 0 c°) 2 (_ (j _) 40

(G-I}

where Gs is the structural transfer function between the gyros and the sensor package's

mounting surface in the vehicle and _ is the random angular rate power spectral density

at the mounting surface.
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Because the gyros have a finite frequency range over which the input rate is per-

fectly followed, the motion of the accelerometer's input axis over all frequencies will

not be precisely described by the gyro's output. Symbolizing the gyro's transfer function

by Gg, if the probability density function of _b is odd the maximum mean square angular

error in the system's knowledge of attitude due to the bandwidth limitation of the gyro is

2
-2 1 oo

- f [1-G (j o_] 2 [Gs (j_o)[
o 2 7r -oo g 0 ¢o)2 _b (j¢o)d¢o (G-2)

This mean square angular error is an uncertainty in knowledge of the angular

orientation of the accelerometer's input axis and as a result contributes an error in the

transformation of the accelerometer outputs from the vehicle to the inertial computational

frame during the thrusting phases. This error has components along the pitch and yaw

vehicle axes of magnitude:

-2
AF = F " ¢0 (G-3)

where F is the applied specific force and AF the resulting error.

If we consider, as an example, an angular vibratory input that has a significant

amplitude that extends over a frequency band that is much wider than the gyro band-

width, the previous equation (G-2) can be approximated by

0e 2
-2 1 _. [G (j_o)]
£0 = _ d S

w O_b¢° (J_o)2 _ (jco)d_o
(G-4)

in which the input environment is integratea over the range from the gyro bandwidth

(¢q0¢o) to infinity. Note that the integration from minus to plus infinity was first replaced

by twice the integral from zero to infinity. If we further assume that the sensor package

has a transmissibility of unity, equation (G-4) becomes

¢_0¢o (j ¢o)2

d ¢o (G-5)
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Considering a constant power spectral density whose probability density function is

odd and evaluating the above integral yields

For gyro bandwidths between 50 and 100 cps, the order of present designs, the

difference between a power spectral density integrated over a range from the gyro

bandwidth to 500, to 1000 or 2000 cps is negligible. To indicate the magnitude of maximum

errors that can occur, Figure G-1 shows the mean angular error as a function of power

spectral density amplitude and gyro bandwidth. To be compatible with knowledge of

the electrical and mechanical uncertainty in knowledge of the orientation of the sensor

input axes, this gyro bandwidth produced error should be of the order of 1 to 10

arc seconds depending upon the particular mission and operational procedure under con-
sideration.

To this point, the random angular motion has been assumed to be characterized by

an angular motion whose mean amplitude is zero and whose integrated effects produce

individual gyro outputs whose mean value of angular rate is zero. The zero mean ang-

ular amplitude is a reasonable assumption as the sensor package is rigidly attached to

the vehicle. Whether the mean value of the gyro rate output is zero or some value

other than zero, depends upon the spatial orientation of the axis of rotation of the ran-

dom angular input with time. If the random angular axis of rotation moves with

respect to the sensor package with time, it can cause a gyro input axis to describe

closed contours in space such that the mean of the gyro output is other than zero.

A classical example of this motion is coning motion in which two out-of-phase

sinusoidal motions about two orthogonal axes causes an axis orthogonal to the two to

describe a cone in space.

For "coning" motions beyond the gyro bandwidth, the drift rate of the attitude

reference due to the finite gyro bandwidth would be

cO

_(driftrate) = __1 / [ I-G 0 ¢o)]2 IG 0co)I2d_ 0co)_n _dc_
g s

8 _r2 COb¢_ (G-7)
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where Gg is the gyro transfer function, Gs the sensor package structural transfer
function, ¢ the power spectral density at the sensor package mounting point. This

equation was derived from the basic coning equation describing the magnitude of the
constant rate compontnt developed in Appendix F

_o(fi) =
4wf.

1

(G-S)

where

/i+Af_2 (fi) = lim _ (f)
Af-_0 f. - Af

1

df (G-9)

C. Unmatched Gyro Loop Transfer Functions

An analysis of the response of a triad of gyros in which each of the gyro loops has

a slightly different transfer function indicates that in the presence of an applied sinu-

soidal angular rate, whose axis of rotation is fixed relative to the sensor package and

has components on two or more input axes, an erroneous signal is created. This

erroneous output of the attitude reference sensors, even when processed in a perfect

computer, results in a constant drift of the computational reference frame. The drift

rate is a function of the amplitude and spatial orientation of the applied rate and the

phase difference of the gyro loop transfer functions between the gyros of the triad.

The effects to be described are presented for a two dimensional attitude reference

since the results are easily generalized to the case of three dimensions. This appendix

will consider a pair of gyro loops which sense rates in the x, y body plane. Let these

two gyro loops have slightly different transfer functions as illustrated in Figure G-2.

The difference in the amplitude response of the two loops is some e (f) and in the phase

response some 5 (f}.

The remainder of this discussion will be concerned with the response at a single

frequency; therefore, for brevity of notation, the frequency dependency of e and 6 will be

dropped. It is, however, necessary that the frequency dependency of these terms be in-

cluded when performing an error analysis.

If a sinusoidal rate of the form _ = a sin _t is applied to the gyros in the x, y plane

along an axis whose orientation is fixed in space (see Figure G-3), the difference in the
transfer functions will produce a distortion of the applied motion.
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Figure G-2 Postulated Differences in Gyro Transfer Functions
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as:

m

The applied rate vector may be resolved along the two input axes and expressed

I _cosOsin_ 1
olsin 0 sin

0

(G-IO)

1. The Effect of Differences in Amplitude Response

In the case where the amplitude response of the two loops differs, the indicated

rate is a distorted version of the applied rate and may be represented as:

d = a sin 0 sin _t

0

This may be written in polar form, dropping second order terms in e as:

cot = _(l+ccos2 0) sin_t _(tan-l[(1-e) tanO])

This is shown in Figure G-4.

(G-II)

(G-12)

DISTORTED RATE (oo')

_ ACTUAL RATE (co)

x

Figure G-4 Distortion of the Original Motion Due to the Difference in Amplitude Response
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In this form it is easy to see that the effect of the different amplitude responses

is to change the magnitude and spatial orientation of the applied rate. Both the true

and distorted motion, however, cause the body to return to its initial orientation peri-

odically such that the error introduced into the computational frame is also periodic
and bounded.

2. The Effect of Differences in Phase Response

The difference, 8, between the phase of the transfer functions of the two gyros
will also cause the gyros to distort the applied rate. In this case the indicated rate will
be:

' cos 0 sin _t I
o_' -- ' sin 0 sin (_t + 5 (G-13)

0

where a' equals .the applied rate (04 times the mean amplitude response of the loops at

the frequency of interest. The above equation may be written as:

(G-14)

The first term in this expression is an effect identical to that produced by the

difference in amplitude response and introduces a periodic, but bounded, error in the

computational reference. The second term, however, describes a constant rate vector

of magnitude _' sin 0 sin 5 rotating in the x, y plane at a rate _ (See Figure G-5).

Y

2ND TERM OF _'

!
1st TERM OF

ACTUAL RATE

X

Figure G-5 Component of _ Introduced by the Differences in Phase Response



d I I _2]for this typeof motionA closedform solution of attitude equation[_(Tb) = T b

shows that this will produce a constant drift of the computational frame (developed in

Appendix C) given by:

1 (_' sin 6) 2 sin O cos 0
D.R. = - (G-15)

2 fl

D. Gyro Output Axis Acceleration Sensitivity

A strapdown unit using single degree of freedom of gyros, when subjected to a

sinusoidal angular rate about an axis that projects a component on the input axis of one

gyro and the output axis of another gyro, outputs an erroneous angular rate vector. This
leads to a divergent error in the knowledge of attitude even with a perfect attitude com-

putational process. This is due to the sensitivity of single-degree-of-freedom gyros to
accelerations about the output axis. It is shown that this drift rate in the knowledge of

attitude is proportional to both the square of the amplitude of the sinusoidal rate and the

gyro's inertia to momentum ratio; the drift rate is independent of the frequency of the

input motion up to the bandwidth of the gyro.

Consider as an example, a strapdown unit in which the three gyros are mounted as

shown in Figure G-6; the input axes defining an orthogonal triad while the output axes are

such that two of them are parallel and the third perpendicular to thesetwo.

$

i

Y

Figure G-6 Typical Configuration of Gyros in an Inertial Unit
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Now consider what happens if an arbitrary variable amplitude angular rate with a

fixed orientation in the body frame is applied to this triad of gryos. For convenience

of computation let this rate be applied along the y body axis:

% (G-16)

The y gyro will of course indicate this rate; however, note that this rate also

appears along the output axis of the x gyro. As seen from the gyro block diagram

(Figure G-7), this causes the x gyro to indicate to the computer, an equivalent rate
about the x axis of:

(I°/H) _y (G-17)

Hence for a vehicle motion described by:

the gyro outputs indicate a different motion:

o/

O

(Q-18)

(G-19)

This effect is absent for rates applied about the z body axis since (as seen in

Figure G-5) none of the gyro output axes are parallel to this axis. For rates applied

about the x b_r.__yaxis, however, the magnitude of the erroneous output is increased by
a factor of _ 2 since both the y and z gyros have output axes parallel to the x body axis.

For the case of a sinusoidal rate applied to the unit (perhaps by control system)

limit cycles or vibration), COycan by expressed as

= _ sin _t (G-20)
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and the true angular rate experienced by the vehicle is therefore:

I°l
0

(G-21)

The unit, however, indicates an angular rate of:

cob = c_sin _t

0

(G-22)

for all frequencies of the COysinusoid less than the gyro bandwith.

The independence of the frequency of the motion extends to the gyro bandwidth

beyond which it is attenuated at a rate of 20 to 40 d.b. per decade depending upon the

loop design.

This erroneous rate (one of the class of coning motions considered in Appendix E)

causes a constant drift rate of the inertial reference. The magnitude of the drift rate is

equal to the solid angle described by the z body axis if it were in fact to be subjected to

the erroneous rate. As shown in Appendix E, the drift rate is:

DR = 1 Io _2 rad/sec (G-23)
2 H

CR-968 NASA-Langley, ,968-- 2, G-12
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former group, the error is predominately truncation error; for the latter computer,

it is predominately round-off error. Figure IV-26 replots the preceding data {plus

other data points not presented) as a function of integration time intervals for position

errors at the end of the first and sixth orbits. At the smaller integration intervals,

the round-off error dominates; at larger intervals, the truncation error is largest.

The effect of computer word length on the truncation and round-off processes

can also be seen in Figure IV-27 where the equivalent position error per integration

step is plotted as a function of the integration step interval. For the 30/30 computer,

the error is independent of integration interval below an integration interval of 30

seconds. This is characteristic of round-off error; beyond 30 seconds, the error

undergoes a transition to truncation. For the 22/44 and 44/44 computer, the range

investigated covers the regions in which truncation is the predominate error.

MULTIPLY/ADD
--4

_b WORD LENGTH

I

o Io _o 3o uo 5o 60

INTEGRATION TIM_ INTERVAL - At - sec _I_I

60R_TS

) i ORBIT

lo ioo

INTEGRATION TIME INTERVAL 1 _t - see

N.u,u

Figure IV-26 Effect of Integration Interval
on Orbital Position Error

Figure IV- 27 Effect of Integration Interval

on Orbit PTL Error
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V. HARDWARE APPLICATION STUDIES

A strapdown navigator, as inspected from the computational point of view,

consists of inertial sensors that measure components of linear and angular motion

which are coordinated by the computational process to define the complete system

motion in a vectorial sense. With the coupling of the inertial sensors occurring

only in the computer, the sensor loops are essentially independent. This allows

certain concepts to be implemented on the sensor level that are not required, are

not necessary or not permitted in a gimballed system. The application of these

concepts on a sensor level will result in maximizing the mission capability of

strapdown navigators. The following areas have been considered and are
discussed in this section. The additional computational requirements to implement

these concepts are outlined and are shown to be small.

1. The shifting of the dynamic operating range of torque-rebalanced sensors

as a function of the level of environment during each phase of flight (boost, free-

flight, midcourse corrections and terminal corrections, etc.) to improve perfor-

mance and reduce power during periods of low environments.

2. The asynchronous sampling of restrained gyros and their data

resynchronization by a general purpose computer to reduce the weight of the

interface electronics between the sensors and computer that are required to store

the pulse sum from each sensor until the computer requires the data.

3. Applying redundancy at the sensor level rather than at the inertial measure-

ment unit level to improve system reliability. (Employing redundancy on a sensor

level as opposed to a system level results in the same reliability, but requires

fewer sensors and thus less weight, or conversely, higher reliability for the same

weight).

A. Shifting Dynamic Range

A strapdown inertial navigator must always be designed to perform to a

desired level of accuracy under the most severe linear and angular environments

anticipated during flight. This includes the scaling of the maximum output from

inertial sensors and the scaling of the computer word length and its computational

rate for the maximum linear and angular motions. For multiple level environment

missions, rescaling of the strapdown inertial navigator for the different

environments will permit the achievement of either improved performance or lower

power during the periods of low level environments. This may result in a decrease

of the overall vehicle weight from the system's standpoint because propellant

weight in future midcourse or terminal maneuvers will be saved due to the in-

creased navigational accuracy and the decrease in power will reduce the weight of

the device used to store or generate power for the strapdown navigator. The
techniques, requirements and trade-offs for shifting the dynamic range of re-
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strainedtorquerebalancedinertial sensor loopsand a generalpurposecomputer
arediscussedin the following sections.

1. Gyro SensorLoop

A restrained, torque-rebalancedsensorloopconsists of the gyro and
its permanentmagnettorquer andcontrol electronics that supply the correct
amountof current to the torquer to counteractthe torque producedby the angular
rate along thegyro's input axis. The magnitudeof the maximum current, i,
required is proportional to theproduct of the maximumvalue of angular rate, _,
andthe angular momentumof therotor, H:

i =kHco

Typical torque rebalanced electronics however do not vary the magnitude of

the retorquing current in proportion to the applied rate because it is very

difficult to maintain an accurate value of current over a large dynamic range.

Rather, a single precisely controlled level of current is employed. The time over

which the current is applied is modulated, alternating between plus and minus, so as

to maintain the integral of current over time equal to the integral of the torque

created by angular rate over time:

fidt =fkHo_ dt

Several examples of these schemes are presented in Appendix A.

The two variables that can be used to readily change the scaling of the gyro

loop's dynamic range in flight are: (1) the magnitude of the level of current used in

rebalancing the gyro loop and (2) the magnitude of the rotor's angular momentum

achieved by varying the rotor speed. The variations and trade-offs in power,

performance and maximum rate capability can be observed in terms of ratios or

percentage changes referenced against a gyro operating at a given set of
conditions denoted by a superscript one. Linear relationships between power,

performance and maximum angular rate are presented below. Nonlinearities have

not been considered because their behavior is not general but rather is associated

with particular designs and the components selected to implement the design concept.

Rotor Power - A majority of gyro spin motors operate at nearly constant

current such that the voltage hence the power is proportional to the rotor speed (_)

p , 1
( o_ er)Roto r H I G 1

o 0 0
(Power)Rotor H c_
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Retorquing Power - The retorquing power is proportional to the square of
the current, thus it is proportional to the square of the change in angular momentum

and maximum angular rate

i i 2 _2
(P°wer)Retorquing _ _WMax._ x/H1 )0 ---6---
(Power)Retorquing _WMax] _H

For most torquer designs there is a maximum power input after which the torquer

efficiency decreases and the relationship becomes higMy non-linear.

Gyro Bias and Mass Unbalance - The gyro bias and unbalance error coefficients
are inversely proportional to the rotor's angular momentum and are independent of

the retorquing electronics

B 1 0
gyro U 1 H 0 (P°wer)Roto r

B 0 U 0 H 1 1
gyro (P°wer)Roto r

Retorquing Electronics Bias - The equivalent bias error in the retorquing
electronics is due to differences in the magnitude of the plus and minus current

levels over the basic pulsing limit cycle period (Appendix A). Over reasonable
ranges of current variation, the difference between the two levels of current for

most designs is proportional to the absolute value of current level

1 .1
Belectronics 1max (P owe r) 1r etorquing

0 .0 0
Belectronics 1max (P°wer)retorquing

Sensor Loop Scale Factor - The scale factor error of the gyro and the

retorquing electronics are essentially independent of the variation in angular

momentum and retorquing current level.

The most severe environments for which strapdown navigators must be

designed occur during periods of thrusting. For the gyros, there may also be

periods of desired high angular rates during nonthrusting phases of flight. For

the more serene environments, the above equations demonstrate one of the

following:

1, Improved sensor loop performance is obtained with lower power by

reducing the retorquing current level to a value that will handle

anticipated rate environments.
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. A further improved sensor loop performance is obtained for the same

power by reducing the retorquing current while increasing the angular
momentum of the rotor by the amount of power deleted from the

retorquing process.

In order to change the retorquing current level or wheel speed, the strapdown

inertial navigator's computer must be able to control switching functions external

to the computer; the computer must be able to change conditions from one precise

condition to another precise known condition. To change gyro wheel speed, the

computer must control changes in the power supply's rotor speed excitation

frequency. To change retorquing current level over wide dynamic ranges, it is

necessary to be able to select different resistors or their equivalent in the current
level control circuitry.

In order to change gyro rotor speed with minimum system error, it is

necessary that the angular rates at the time of switching be small in order to

minimize the error associated with the uncertainty in gyro scale factor during the

transient spin up and spin down period, which is in the order of ten to twenty
seconds. The alternative to using low rates during the transient period is to use

stellar observations to correct the attitude inertial reference after the change in

wheel speed has been accomplished. In contrast, the change in retorquing current
levels can be made in less than a millisecond.

2. Accelerometer Sensor Loop

The pulse torquing rebalancing concepts applied to accelerometers are

identical to those used in the gyro sensor loops. In the accelerometer loop,
the pendulousity, the pendulous mass times the moment arm, cannot be varied as

is the angular momentum in the gyro. Therefore, the only item that can be used

to change accelerometer dynamic range is the retorquing current level. The re-

torquing power required is again proportional to the square of the maximum level

of acceleration that the loop must measure. For the accelerometer loops, the

electronic equivalent bias is proportional to the maximum acceleration (current)

level and the scale factor of the entire loop is insensitive to the maximum

acceleration (current) level. The change of levels is accomplished quite rapidly

and accurately during nonthrusting phases.

3. Strapdown Computational Process

The shifting of the dynamic range of the attitude and position computational

processes in a general purpose computer for serene space environments requires

only the decreasing of the computational frequency (the increasing of the size of
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the integration interval). The computational frequency is reduced so as to place

the errors created by the attitude and position computational processes in the

transition region between round-off and truncation for the lower environmental

levels. (The same design philosophy is also used in the design of the computational

processes for the environment encountered during all flight phases including

boost. ) This simple change in the computational frequency lowers the computational

error from that occurring during periods of high level environment flight that use

the same computer word length. The lower computational frequency also reduces

the duty cycle of the computer that in turn reduces the average power required to

operate, access and read the memory. Using longer computer word lengths or
its equivalent, double precision computations, and higher order integration schemes

to further reduce the attitude and position computational errors is usually not

necessary; the lowering of the attitude computational frequency is sufficient to

maintain the computational error below the gyro errors even when the latter are

rescaled to improve performance. In order to accommodate the change in sensor

scaling, discussed in the previous section, the computational process must simply

select a new set of sensor compensation terms (scale factor, bias and for

thrusting, unbalance) from its data memory.

The additional computational functions to change the scaling of the navigator

are negligible compared to the basic computational routines. A few program in-

structions are required to implement the logic decisions as to when the dynamic

range is to be changed. A few data memory locations are required to store the addi-

tional sensor compensation coefficients.

B. Sequential Sensor Sampling and Resynchronization

A strapdown sensor unit operating in conjunction with a general purpose

computer requires an interface unit which stores or holds the output from each

sensor until the computer is able to accept the data. To provide synchronized

sensor data, which is of primary importance for restrained sensors, a holding

register for each sensor is required in the interface module. The availability of

holding registers permits shifting of the data from all sensors into the interface

module on the occurrence of a single synchronizing pulse and the reading of the

data from the interface module by the computer in a sequential manner through a
single input/output channel.

If sensor data were not transferred simultaneously from the sensor to the

interface module, but rather sequentially, only one common holding register would

be required. This would substantially reduce the number of components, size and

weight of the interface module. However, computer logic would then have to

provide a means of resynchronizing the sensor data prior to processing in the

manner discussed in Appendix B. If the resynchronization is neglected, the re-



suiting error dueto the phaseshifted datawill behavein an identical mannerto that
dueto sensorquantization. The strapdownattitude computationalprocess hasbeen
examinedto determine the characteristics of the data resynchronizationprocess.

Thestrapdownattitude computationalprocess must numerically integratenine
differential equations

d/dt IT] = [T] [ _21

where [ T] is the 3 x 3 direction cosine attitude matrix defining the transformation

from the rotating to a fixed coordinate system, and where [ _2 ] is a skew-

symmetric matrix whose elements are components of angular rate measured in the

rotating frame (see Appendix B). To numerically integrate these equations,

measurements of components of angular rate are required at particular points with-

in the integration interval. Techniques to extract rates accurately from three gyro
outputs have been developed and discussed in Section IV. Such a scheme for

synchronized (in time) sampling of the triad of gyros that yields rate estimate accuracy

compatible with a 4th order Runge-Kutta algorithm has been developed.

If the acceptable computational accuracy could be obtained with the gyro

outputs available asynchronous in time, the number of static registers for the gyros
could be reduced from three to one. A schematic of the time of sensor data

availability and integration intervals for a fourth order integration process with

asynchronous sampling is

At =] = At _]
-4 i

I [ I I ! Gyro 1

t l I [ I t Gyro 2

M' k-
I I i I l

2M _-- Gyro 3

Sampling
Times

This figure shows the sampling of the gyros displaced by a time increment M,

to be used in an integration inverval of size At. For a 4th order integration process

it is necessary that estimates of the components of angular rate at the beginning,

midpoint and end of the integration interval be formulated (as before with synchronous
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outputs) with accuracy sufficient to preserve the accuracy of the fourth order inte-

gration process.

One way to approach the problem is touse the gyro data samplings that are

unsynchronized with respect to the integration interval to estimate the gyro outputs

that would have been obtained if the gyros were sampled at the midpoint and end of

the integration interval. These estimated gyro outputs can then be processed to

extract rates by the aforementioned gyro data processing equations.

Such a resynchronization process is schematically described below. The time

relationship between the integration process, the sampled gyro outouts { AO) of the

i th sensor and the estimate of the gyro outputs (AO') that would have been obtained if

the sensor had been sampled synchronously in time with the integration process are
also shown.

tn_ 1 t n

I_ A0 2(n-1) ___l_ A03 (n-l)

At

5O
2

F--

:[: AO2n

AO'

F 2n :_I=

t
n

.L AO3n ' _

AO3 n _ I

The equations and process for obtaining the synchronized gyro estimates are:

Given: Gyro outputs every h/2 period of time that lag the

beginning and midpoint of the integration interval by

M time period.

Derive: Estimates of gyro outputs over the first and second half

of the integration intervals to be used with the standard

rate extraction equations.
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Procedures:

i,
Describe 8 as a second order polynomial in time over

the time period of AO2n and AO3n

O (t) = a t+b t 2
n n n

a 1 (3A
n = h O2n -A 03#

1
b =-

n h 2 (A@3n - AO2n)

, Estimate the gyro outputs during the first and second halves of

the integration interval

AO_.n=@ I h/2-M +AO*n o n-i

h-M

AeOn = On I n/2-M

h

AO* = O In h-M

In initiating the process, AOn_ 1 can be assumed to be

= a • MAO -i n

, Apply present rate extraction equation (presented by Appendix B)

utilizing

A@2' n and A@3n

4. Repeat for the other two gyros.

Digital simulations have been run to evaluate this process and have demon-

strated accuracies compatible with the fourth order integration algorithm

employed. A coning type motion was used in these simulations since it represents

one of the most difficult motions for the computer to follow. The errors introduced

by the asynchronous sampling were small and it was necessary to use rather
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large delay times (M = 20 and 40 millisec) to separate itfrom the normal truncation

errors. Figure V-1 presents the total computational error for the employed coning

motion. The two cases run with the resynchronization of asynchronized gyro

samplings using the aforementioned resynchronization process can be compared with

the case of synchronous gyro samplings. The principle effects of resynchronizing

asynchronous samplings is to modify the transition region from round-off to

truncation and to increase the trunction error by a constant factor. It is seen from

Figure V-1 that the resynchronization error is a function of the fifth power of the

frequency ratio (the same as the truncation error). Figure V-2 presents the

additional error introduced above the truncation error by the resynchronization

process. This figure was obtained by subtracting from the 20 millisecond

asynchronized sampling curve the synchronized sampling error curve of Figure V-1.
Also shown are data for two different amplitudes of vehicle motion. The data of

Figure V-2 demonstrate that the error in resynchronization is proportional to the

square of the angular motion amplitude. Table V-I tabulates the resynchronization

errors for the two different asynchronization time intervals employed. It is shown

in this table that the resynehronization error is directly proportional to the

magnitudes of the asynchronization period. These results can be analytically des-
cribed by the following error model

Drift rate - KM O 2 (f/fc) 5
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TABLE V-I

SUMMARY OF RESYNCHRONIZATION DATA

O

(rad/cps)

0. 096

0. 005

At

(sec)

1

1

1

0.5

O. 25

1

1

LO

(rad/sec) _At

1.57

0. 785

0. 392

1.57

1.57

1.57

0. 785

Resynchronization Error

1.57

0. 785

0.392

0. 785

0.396

1.57

0.785

arc sec/step

for

M = 0.02 sec

7.68 x i0

2.36 x 10 -1

7.66 x 10 -3

4.33 x I0 -I

3.07 x 10-2

2.13 x 10 -2

1.37 x 10 -3

arc sec/step

for

M = 0.04 sec

i. 42 x i01

-i
4.35 xlO

-2
1.92 x I0

-i
7.75 xlO

-2
4.26x 10

-3
3.48 x 10
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C. Redundancy

Physical redundancy is an effective means of extending space guidance system
reliability design goals to levels that are not attainable with state-of-the-art technol-

ogy. Therefore, redundancy may be considered as a stop gap, achieved at the expense
of other system parameters, to strengthen the weakest links of the guidance system

until advanced technology can provide critical items with improved reliability charac-
teristics so as to negate the need for redundancy. The implementation of a redundant

guidance configuration requires that certain basic technological ideas be considered.
Among these are:

1. A decision defining the type of redundancy to be used and the level
at which redundancy is to be established.

2. The ability to detect failure and to correct the malfunction by switching

to a redundant unit without permanent loss of the entire system.

3. The trade-offs of system performance, computer requirements, weight,

power, volume, etc., associated with redundancy.

The following paragraphs examine the above considerations as related to the

inertial sensors of a strapdown navigator for extended duration space mission

applications. It is assumed that the strapdown navigator will be used in conjunction

with and receive support from additional spaceborne sensors to provide the basic
data needed for navigation, guidance and control functions for these missions. The

availability of data external to the inertial navigator will be shown to be critical to

isolate "failures" caused by the inertial sensors being out of performance specifica-

tion. However, physical failures can be detected completely within the inertial
navigator. The following sections discuss reliability factors, performance, and failure
detection functions.

1. Reliability

The failure rate of a system is a measure of the anticipated reliability of the

unit when operating under an environment and duty cycle specified for a particular
mission. Failure rate estimates are obtained by summing the failure rates of the

piece parts that comprise the system. The failure rate of several strapdown sensor

package designs of the restrained sensor class for a fairly broad range of missions
have been averaged to obtain a representative nondimensionalized failure rate break-

down at the subsystem level assuming that all subsystems are continuously operating.

This breakdown is shown in Table V-II. The data presented is a good example of the

reliability apportionment attained between the subassemblies of the strapdown sensor
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TABLE V-If

NONDIMENSIONAL FAILURE RATE ANALYSIS SUMMARY

No. of

Subassembly Parts Nondimensional Failure Rate

Gyro Group

Gyro 3 .5440

Retorquing Electronics 3 .0822

Sub Total .6262

Accelerometer Group

Accelerometer 3 .1511

Retorquing Electronics 3 .1033

Sub Total .2544

Auxiliary Electronics

Frequency Countdown

Temperature Control

Crystal Oscillator and

Electronics

1 .0368

1 .0168

Sub Total .0536

Power Supply 1 .0658

Total 1.0000
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package using current technology. As would be expected, the sensors because of their
mechanical nature are most subject to failure. The relative contribution of acceler-

ometer loops in a reliability budget for an extended space mission, however, would be

considerably less than that shown in Table V-II. The accelerometers and the tempera-
ture controlling of the sensor package would be designed to allow the accelerometers

to be turned off except during thrusting periods (including boost, transfer maneuvers,

trajectory corrections, orbit keeping etc.). Thus operating time is very small com-

pared to the total mission time. Survival of the boost phase of the mission can be vir-

tually assured by the use of high probable-lifetime components and proper system de-

sign and installation. Once in space, thrusting periods are infrequent so that the
accelerometers can be shutdown for periods when not needed. Available data indicates

that repeated reactivation of the accelerometers does not increase their failure rates

above that stated in Table V-II. Thus, the duty cycle of the accelerometers compared

to that of the gyros, which must operate over longer periods of time (if not for the

entire mission) to maintain the inertial reference, is so small that the reliability of

the accelerometer loops have a small effect upon the reliability of the inertial sensor

package for extended space missions. Therefore, the most significant modification

that can be made to improve reliability is the improvement of gyro loop reliability.
Assuming that the most reliable gyros available would be selected for use in extended

space missions, further improvements can be achieved only by providing gyro
redundancy.

Gyro sensor redundancy can be implemented in several ways. The alternatives

considered in this study are shown in Figure V-3. Without redundancy the basic

sensor gyro triad can be operationally represented as a serial device; a failure of any
one gyro causes a system breakdown. The most obvious approach to sensor redundancy

is to provide a second set of three gyros oriented parallel to the first which can be

used if a failure occurs in the primary set. The redundant triad could be substituted,

either as a complete set (serial-parallel configurations, Figure V-3) or individually

(parallel-cross-strapped configurations, Figure V-3) when a failure occurs. For

cross-strapped configurations, each gyro in the redundant set provides a baclmp for

a specific gyro in the primary set; therefore, as many as three discrete failures

(but only one along each axis of the triad) can be tolerated using a cross-strapped

configuration whereas only one can be tolerated in a serial-parallel configuration

(substituting on a system basis) before a complete system breakdown occurs. In either

the serial-parallel or the cross-strapped arrangements, the redundant sensors can be

maintained in either an operative or a standby mode.

Another approach to gyro redundancy is to utilize a single redundant sensor to

provide backup for all the gyros in the primary set. In order to accomplish this,

the gyro must be oriented so that its sensitive axis does not coincide with that of any

gyro in the basis triad (the necessary mathematics to resolve the output of the gyro
into the coordinate reference frame of the primary set must be provided in the strap-

down navigator). The singular redundant gyro may also be kept in either an operative
or standby mode. This approach may be extended even further by using three additional

backup sensors each of which is capable of backing up any one of the three sensors of

the primary system (Figure V-3).
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Figure V-3 Redundant Gyro Configuration Functional Schematic
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The improvement in reliability of the gyro sensor loops, considered collectively

as a contributing element of overall reliability, has been evaluated parametrically
for each of the aforementioned redundant configurations under the following

assumptions:

I. The gyros exhibit an exponential failure distribution (i. e., the gyros are

operating after run in and before wear exerts an apparent influence on

failure rate).

2. The basic gyro and torquing electronic reliability, whether a primary of
or redundant sensor, is the same for each element within the configuration.

Figure V-4 presents the probability of success of redundant configurations as

a function of the probability of success of a nonredundant triad.

Of the configurations considered, the multiple gyro redundancy mechanization

yields the largest increase in gyro system reliability; the standby mode, of course,

provides the higher reliability of the two operating modes. For this configuration,

three failures of any gyros either in the basic triad or the redundant group can be
tolerated.

The completely redundant cross-strapped mechanization yields the next highest

increase in gyro system reliability; the standby mode again producing the higher

reliability of the two operational modes. For this system up to three failures in the

systems, but a maximum of one along any axis of the triad, can be tolerated.

Both the multiple gyro redundancy and the cross-strapped gyro mechanizations

are most applicable for strapdown systems. In a gimballed system, the size and

weight penalties that result from implementation of these arrangements are very
large because all sensors must be put on the cluster inside the gimbals. Usually a

gimballed inertial unit employs redundancy on a system level as in the serial redundancy
mechanization.

Serial system redundancy provides a substantial improvement in overall reli-
ability but not as much as the two previous configurations because the serial system

redundancy can only tolerate a single failure. The single gyro redundancy mechanization

in fact provides a higher reliability in the operating mode than does the serial system

mechanization in the operating mode because there are fewer elements in

the single gyro redundant system. In the standby mode, both the single redundant gyro

and the system-serial mechanization offer about the same reliability.
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The effect on probability of success (that the gyros operate for the mission

duration) using either the single or multiple gyro redundancy approach, the preferred

approach for strapdown systems, is extremely large. Figure V-5 depicts probability
of success versus time for various mean time between failures. Assuming a triad of

gyros of 10,000 hours MTBF and a mission time of a year, the probability of success

is about 0.5. Using a single redundant gyro in the standby mode raises the probability

of success to 0.85. For three redundancy gyros, the probability of success is 0. 994.

Although the multiple redundant gyro system offers the highest reliability of

the configurations studied, the singularly redundant gyro offers reliability that is

sufficient for many missions plus the advantages in power and weight savings. The

three gyros and torquing electronics of the inertial sensor unit typically comprise 25

percent of the total unit weight. To add three additional gyros with matched torquing

electronics to this envelope would increase unit weight by 40 to 45 percent allowing

for associated increases in structure, insulation, etc. whereas system weight would be

increased by 15 to 20 percent if a single gyro torquing electronics were added. The

additional power required for thermal control of each additional gyro requirement of

the original triad in the standby mode is 1 percent of the basic power. An increase

of approximately 10 percent in the maximum power input to the basic unit is required

to maintain each additional gyro in an operating mode. Operating all gyros continu-

ously requires increased power over standby conditions and reduces reliability but

continuous operation does offer the ability to switch from primary to backup gyros

without requiring a period of time for the sensors to reach a condition of stable opera-
tion. With power and reliabilfty continuing to remain critical factors for extended

duration missions, standby operation appears to be the favorable mode of operation
other than during critical phases of the mission such as midcourse corrections and
terminal maneuvers.

2. Performance

The performance of the singularly redundant gyro configuration has been studied,

both from the standpoint of using the fourth gyro to provide redundant information to

improve the accuracy of a properly operating basic triad and from the standpoint of

determining the accuracy of the system after the redundant gyro has replaced a failed

unit in the primary triad. (The approach applies equally to the multiple redundant

gyro system. ) As previously pointed out, the redundant sensor must be skewed with

respect to each of the primary gyro input axes. Three such configurations illustrated

in Figure V-6 were selected for study. The reference c c_figuration on which the per-

formance of all other combinations is based is assumed to be an orthogonal triad with

input axes coincident with a body reference coordinate frame. The first redundant con-

figuration places the fourth gyro on a diagonal of the basic system. The second redun-
dant configuration utilizes gyros positioned along diagonals in each quadrant of the

reference coordinate system so that no sensor axis is coincident with the body reference
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coordinate axes. The third configuration is similar to the second except that the gyro

input axes are placed along equally spaced elements of a right circular cone.

With each of the above configurations the angular rate about any one of the body

reference axes can be calculated with the output of any of the three gyros. Geometrical

expressions for translating sensed gyro rates to computed body axis rates for each of

the above redundant configurations axe shown in Figure V-6. The redundant data

provided by a fourth gyro permits body angular rates to be calculated by means of two

alternate expressions for each assignment if all gyros are operating. Thus, perfor-

mance improvements attained by averaging the two pieces of redundant data made

available by operating all four gyros simultaneously should be achieved by averaging.

The computer requirements for performing this averaging sequence are shown in

Figure V-6 and are small. Averaging, of course, cannot be performed when one

gyro has failed. When a gyro has failed the alternate calculation of rate still exists.

Performance analyses have shown that modest accuracy improvements can be

achieved by using a fourth gyro to provide redundant sensor information. The quali-

tative measure of system accuracy used in these studies for both redundant informa-

tion and replacement modes of operation is the root-sum-square (RSS) value of the

errors appearing on each of the reference coordinate axes. The apparent errors on the

coordinate axes are comprised of individual sensor errors which are combined geo -

metrically in accordance with the previously discussed rate expressions shown in

Figure V-6. Non-thrusting orbital motion has been assumed so that only the bias (B), scale
factor (SF) and input axis (which can be treated as a scale factor error) error terms can

be considered. Appropriate expressions for the resultant system error vector are

presented in Figure V-6.

The performance of the redundant configuration is affected by the manner in

which the maximum angular rate environment for a particular mission occurs. For exam-

ple, all gyros could be scaled the same to meet a rate environment specified such that

"the instantaneous rate about an arbitrary axis shall not exceed a specified value".

If, however, the rate environment is specified such that maximum rates about each

coordinate reference axis can be imposed simultaneously, one or more of the gyros

(as appropriate) used in the reference basic triad capable of following the motion must

be rescaled in order to follow the larger resultant angular motion which exists about

axes that are not principal body axes. A given strapdown gyro can be rescaled to

follow higher angular rates but usually only with an appropriate growth of the instru-
ment errors.

Expressions for the system error vector for both maximum rate specifications

are presented in Figure V-6 for both redundant information and replacement modes
of operation.
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Table V-III summarizes a comparison of the performha_ce of normal and appro-

priately rescaled redundant gyro systems with the performance achieved by the refer-

ence triad considering bias errors only. The performance figure of merit is the per-

formance of the noted configuration divided by the performance of the basic triad.

The performance figure of merit operating under each of the four conditions is strongly

affected by the goemetry of the sensor arrangement and the angular rate specification.

(None of these arrangements are proposed to be optimum. They are simply cases

that have been selected to study the variations in performance. )

TABLE V-III

REDUNDANT SENSOR PERFORMANCE SUMMARY

Configuration

Basic Triad

#1

#2

#3

CONFIGURATION ERROR BASIC TRIAD ERROR

REDUNDANT OPERATION REPLACEMENT OPERATION

Normal***

Gyro Scaling

1.00

1.224

.866

.912

Appropriate**

Gyro Rescaled

NA*

i. 732

1.502

1.825

Normal***

Gyro Scaling

1. 523

1. 223

1. 292

Appropriate**

Gyro Rescaled

2.08

2.110

2.585

* Rescaling not required

** Maximum angular rate components about all three axes simultaneously

*** Maximum angular rate about any arbitrary body axis

3. Failure Detection

Implicit in the concept of redundancy is the ability to sense and isolate com-

ponent failures. Gyro failures may be categorized into two types:

1. Sudden, catastrophic failures rendering the sensor completely inoperative.

2. Partial failures, either sudden or gradual, which degrade the performance

of the unit to an unacceptable level.
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Complete or sudden failure Of the gyro can usually be traced to a mechanical or elec-

trical breakdown within the gyro or its torquing electronics. Experience with gyrG

failures indicates that this type of failure can be effectively detected by monitoring
criticalparameters, such as wheel speed (by means of a Spin Motor Rotation Detection

device) or the torquing electronics output pulse train, in serene environments.
With this type of monitoring technique, the identity of the failed unit is determined

directly. The computer switching logic required to monitor and mathematically im-

plement the substitution of the redundant unit into the configuration is very small as

compared to the requirements of the total system. Catastrophic failures by their

nature usually are impossible to detect before they happen so that some means of

reinitializing the inertial attitude reference must be provided. External data is

needed to update attitude errors accrued during periods when the gyro system is inoper-
ative. This data can be provided by stellar measurements.

Partial gyro failures are more difficult to isolate than complete failures. A

method of determining ff a partial failure has occurred is to compare the two alter -

nate methods of computing angular rates (Figure V-6) by periodically running all

redundant gyros along with the basic triad. If the computed rates do not agree within

a predetermined tolerance, it can be assumed that a failure has occurred. The tech-

nique, to this point, does not require the use of any information external to the system.

However, due to the cross-coupling between the body rate equations, it is impossible
to isolate the failure without the use of additional data. Consequently, if a failure

has been detected, external information must be used to complete the diagnosis.

Stellar trimming or similar procedure for updating gyro bias is one technique to pro-

vide this information. If the gyro drift error established by two successive stellar
measurements exceeds a pre-established schedule, this can be interpreted as a prob-

able failure of that unit and the appropriate substitution can be made and the system
reinitialized.

It should be noted also that partial gyro failures through performance degradation

of the basic triad can be ascertained directly from information derived from stellar

measurements if they are periodically performed as a matter of course throughout

the mission. This prospect offers the advantage of eliminating the need to periodic-

ally activate the redundant gyros.
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VI. COMPUTATIONAL REQUIREMENTS STUDY

In conjunction with the development of analytic models of the computational

errors associated with strapdown navigation systems, a digital computer program

has been developed which employs these error models to evaluate the effect of the

computational process upon attitude, velocity and position accuracy throughout the

mission. The previous section and the appendices of this volume describe these

computational error models and the second volume of this report describes the digital

program and its use. This section evaluates the computational requirements of a

restrained strapdown navigation system for a translunar mission and phases thereof.

The translunar mission consists of the following phases: boost, injection into a

parking orbit, coast and injection onto the translunar trajectory. These phases of

the mission apply equally as well to many other space missions. Similarily, they

share assumed flight environments encompassing a wide range of launch vehicles.

The first part of this section discusses the error sources and tradeoffs that

exist between the sensors and computational processes in the presence of a dynamic

environment. Both the sensor and computational processes must be considered simul-

taneously in a system design process as they process the same data in a serial fashion.

The next part defines the flight environments assumed for this study. The final section

presents a parametric evaluation of the computational error in terms of computational

and computer characteristics. The results presented should be viewed as an example

and a guideline rather than as a broad, generalized projection of future computer require-

ments because of the strong, critical interaction that exists between the vehicle vibra-

tory environment, the structural characteristics of the sensor package mounting shelf,
the sensor loop frequency response characteristics and the computational process.

A. System Error Analysis

A strapdown navigator during thrusting phases of flight requires the coordi-

nated operation of gyro and accelerometer sensors in conjunction with a computa-

tional process to accomplish the navigation function'. As usually mechanized, the

computational process for a restrained sensor system is

V I: [S[TbI ] • [_J dt] _-b dt -SgIdt

which is intended to approximate

VI-I



In theseequationsV represents velocity, T the attitude of the vehicle relative to
the inertial computationalframe, [ _] is the rate matrix describing the inertial
attitudeof the vehicle, F is specific force and_ is gravitational acceleration. The
sequentialcouplingof the sensorsandcomputationalprocess in implementingthis
navigationprocess is shownfunctionally in thetop section of Figure VI-1. The
bottomsection of the samefigure displays the couplingbetweenthe flight environ-
mentandthe errors in the navigationprocess.

The objective of navigation system performance design is to achieve a given

level of performance for a specified flight environment within one or more other

system constraints, i.e., reliability, cost, weight, power, etc. Sometimes the

converse problem is posed: optimize performance for specified reliability, weight,

power, etc. In achieving this objective, the entire navigation process must be

simultaneously considered and analyzed. An error allocation or budget must be

formulated considering the relative significance of individual error sources upon

both total mission performance and the physical characteristics of the system.

The evaluation of navigation performance requirements (sensors plus computational)

requires a specification of the flight environment, the desired system performance

and the determination of the weighting factors between component performance

requirements and the total system's physical characteristics.

In a subsequent section the computational requirements versus accuracy for

an assumed flight environment and sensor characteristics are parametrically

presented. In order to place the assumptions in proper perspective all the navi-

gation system error sources and their interactions are summarized in the following

paragraphs.

With reference to Figure VI-I, the flight environment to which the system is

subjected is usually specified at the mounting structure to which the inertial sensor

package is attached. The environment consists of: (i) zero or low frequency angular

motions associated with vehicle control and its flexible bending modes, (2) linear

acceleration associated with the main propulsion unit, and (3) both linear and angular

vibratory motion distributed over the frequency spectrum, arising principally from

the main propulsion unit. The task of the navigation system is to sense the angular

and linear motion applied to it and to compute its attitude, velocity and position.

By reason of its mechanical attachment to the vehicle, these data are also an

excellent estimate of vehicle conditions. In Figure VI-I, the angular and linear

flight environments are transferred to the sensors through the sensor package

attachment structure and the sensor housing structure itself (Boxes 1 & 2). The

mechanical design of the sensor package attachment and housing structure there-

fore are an integral part of the performance analysis and design of the system. The

attachment structure may be hard or soft (shock mounts or a vibration isolation

system), while the sensor housing should be stiff. A rigid sensor housing is desired
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to preserve the mechanical alignment between sensor input axes and the sensor

package reference orthogonal coordinate frame to which all data is resolved prior

to computing attitude and resolving accelerometer data into the inertial computa-

tional frame. It is functionally indicated in this figure that the attachment and

housing structures can translate a linear environment into both linear and angular

motion as seen by the sensors: Similarily angular motion can be translated into

both linear and angular motion.

In addition to the typically treated sensor errors - the zero frequency quasi-

steady errors of bias, scale factor, rectification, etc., denoted in boxes labeled

3 and 4, there exists and additional group of errors that arise through the distortion

of the true signal by the sensor due to its finite frequency response, both phase

and amplitude (Box 5). These errors arise in the presence of correlated angular

and linear motion input to more than one inertial sensor. Examples are: (i)

unmatched phase response between the gyro triad that result in an unbounded attitude

drift rate for sinusoidal inputs having components on more than one gyro input axis

and (2) unmatched frequency response (both amplitude and phase) between the gyros

and accelerometers, that result in unbounded velocity drift rate. These errors

cannot, however, be considered alone; these errors can be amplified or attenuated

by the attitude and coordinate conversion process (Boxes 7 and 9) depending upon the

frequency of the output signal and the frequency of the computation. Ref 12 describes

these errors, their models and the characteristics of the interaction in detail.

In Box 6, the attitude computational errors of truncation and roundoff are

represented. As described in Section IV, these errors are affected by the computer

and computational characteristics and the angular motion passed onto the computa-

tional process by the gyros. Of predominant importance is the gyro loop's ampli-

tude ratio (a function of frequency) as it defines the frequency range of the signi-

ficant motions to be followed by the computational process. In Box 8, the distortion

of the angular motion caused by a finite coordinate transformation frequency in

resolving the accelerometer outputs into the inertial frame is functionally represented.

This error is associated with the uncertainty in knowledge of the orientation of the

accelerometer input axes between attitude computational interval and occurs because

is used to approximate

fl f
in the navigation process. The size effect error described in Section IV is

typical of this class of error.
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The effect of each of these classes of errors can be appropriately modeled

in terms of an error rate (A¢o) or error acceleration (As) in the sensor or vehicle

frame. The computational error models have been previously presented in this

report; Reference 12 summarizes the sensor, coupled sensor and coupled computer-

sensor errors. To evaluate the effect of these errors on system performance

(attitude, velocity and position) a linearized set of navigation or propagation equa-

tions can be employed; the enclosed box of Figure VI-I represents one type of

linearized propagation equations.

With a system performance model formulated as above, the design of the

system for a particular mission or missions can be accomplished in performing

such an analysis. The following areas may warrant tradeoff studies: i) attach-

ment structure resonance frequency, sensor loop bandwidth and computational

frequency; 2) dynamic and quasi-steady error allocations, and 3) allocation of

errors between the various dynamic errors and between the various quasi-

steady errors.

B. Flight Environments

The flight environments employed in the computational requirements study

are presented in this section. The mission selected for analysis was that of a boost

and injection in a circular (108) n mi) parking orbit, a coast phase of one period and

then an injection onto a translunar trajectory. The flight environment employed

was that of an Atlas-Centaur which is also typical of an Atlas-Agena and a Thor-Delta
environment.

Figure VI-2 presents the atmospheric angular induced motion for the first

three vehicle bending modes lasting for the first 140 seconds of flight. The dashed

lines are the approximations employed in the analysis in order to reduce the amount

of data into the digital evaluation program.

In addition to these atmospheric induced motions, a control system limit

cycle of 2 deg/sec at 2 cps about each of the vehicle axes was assumed during all

phases of power flight. During the free flight portion of the mission, a control

limit cycle of 1 degree amplitude with a period of 200 seconds is assumed.

Figure VI-3 presents the linear vibratory input envelope at the Centaur

mounting shelf measured during the flight of AC-2. The solid line represents the

estimated amplification of the environment by a sensor package attachment

structure characterized by a structural resonance at 200 cps with an amplification

factor of 3. Associated with this linear environment is the estimated induced angular

Vl-5
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environment presented in Figure VI-4 for a non-cg mounted sensor package of the size

and shape of the LEM Abort Sensor Assembly. This estimated linear induced angular

environment represents the path in Figure VI-1 from block 1 associated with the linear

environment to the environment summer in the angular environment line. These

estimates of induced angular motion were based upon planar or two-dimensional

models; a three dimensional model to evaluate the possibility of introducing coning
motion is not available.

These environments form the basis for evaluating the effect of different strap-

down computational processes upon navigational accuracy presented in the following

section. It was assumed that the band width of the gyros were significantly wide to

pass all of the vibrating motion shown in Figure VI-4 onto the computer.

C. Analysis Results

Using the program described in Volume II, four computational and computer

configurations were analyzed; the attitude errors and their effect upon navigational

accuracy were established. These studies were performed for the trajectory and

flight environment described in Appendix E of Volume II. The computer and compu-

tational configurations investigated are shown in Table VI-I.

TABLE VI-I

SUMMARY OF COMPUTATIONAL CHARACTERISTICS FOR SIMULATION RUNS

Coordinate

Attitude Integration Attitude Conversion

Configuration Word Length Scheme Frequency Scheme

Number (bits) (order) (cps) (order)

1 35 1st 200 2nd

2 27 1st 100 4th

3 30 2nd 100 2nd

4 27 2nd 50 4th

Coordinate

C onver sion

Frequency

(cps)

200

50

100

25

Because the computational errors are independent, the various processes

analyzed and their associated errors can be permuted into many different combina-

tions. In this section the various errors will be discussed in three groups:

1) Roundoff associated with computer word length used in the attitude process;

2) Truncation associated with the integration scheme and frequency used in
the attitude process; and
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3) Coordinate conversion associated with the scheme and frequency used to

resolve the accelerometer data into the inertial computational frame.

The truncation errors are associated with the attitude computational process

following the motions described by the constant pitch rate of the vehicle and the

sinusoidal and vibratory motions described in the previous figures. Table VI-II

presents the legend employed in Table VI-III through VI-VI wherein the navigational

errors due to initial conditions and the computational errors are presented for the

four configurations analyzed. Initial condition errors of 20, 20 and 10 meters for

downrange, crossrange and altitude and 20, 10 and 10 arcseeonds for azimuth, in-

plane and out of plane vertical alignment were assumed. The errors were evaluated

at five points within the trajectory; segment (1) at 80 seconds at which the atmospheric

induced motions were changed; segment (2) at 140 seconds corresponding to the termi-

nation of the first stage; segment (3) at 560 seconds corresponding to the termination

of the second stage and injection into a 108 n mi circular orbit; segment (4) at 5900

seconds with the completion of one orbit; and segment (5) at 6065 seconds after

a AV of 10, 000 ft/second was applied tangential to the orbit. In these tables the

attitude error (DELRA), the downrange error (DELDR), the crossrange error

(DE LCR), the velocity magnitude error (DELVEL) and the in-plane (DELGAM) and

out-of-plane (DELPSI) velocity errors are shown.

In order to graphically examine the variations in performance with different

computational characterisitcs, the totai position and velocity errors at 560 seconds

are presented in Figure VI-5 through 7 for truncation, roundoff and coordinate con-

version, respectively. In these figures, the actual data points obtained from the

simulation are circled; the dash lines connecting these points and extrapolating

beyond are based upon the analytical models presented in Section IV.

In Figure VI-5, the truncation error for the first order integration process is

presented as a function of computational frequency. The curve presented represents

the root sum square of the errors due to the constant rate, the sinusoidal and random

environments. For the angular environments considered, the truncation error for

the second order process is negligible as indicated in Tables VI-5 and 6. (Similarly

the errors for any higher order integration scheme would also be negligilbe. ) In

the first order data presented, the truncation error decreases then increases as

the computational frequency is increased. This behabior is the result of the inter-

action of the sinusoidal and random environments. For the sinusoidal motion, the

computational error decreases as computational frequency is increased. For the

vibratory input, the analytic model developed provides an optimistic estimate of the

error; in fact, the model's characteristics are such that the vibratory motion at

frequencies beyond the computational frequency yield no error at all. For this

reason, the computational error using this model is a function of only the environ-

ment at frequencies below that of the computer. Therefore, with reference to
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TABLE VI-II

DEFINITION OF ERROR SOURCES "

ES

2

3

4

5

6

T

8

9

I0

II

12

13

I5

I6

17

18

19

20

21

22

23

2_

25

26

27

ERROR DEFINITION

INITIAL RADIAL POSITION

INITIAL DOWNRANGE POSITION

INITIAL CRDSSRANGE POSITION

INITIAL RADIAL VELOCITY

INITIAL DOWNRANGE VELOCITY

INITIAL CROSSRANGE VELOCITY

AZIMUTH ALIGNMENT

INPLANE VERTICAL MISALIGNMENT ANGLE

OUT OF PLANE VERTICAL MISALIGNNENT ANGLE

CONSTANT RATE TRUNCATION

SINUSOIDAL RATE TRUNCATION IX BODY AXIS)

SINUSDIDAL RATE TRUhCATICN IY BODY AXIS)

SINUSOIDAL RATE TRb_CATICN (Z BODY AXIS)

ROUNDOFF IX BODY AXIS)

ROUNDOFF (Y BODY AXIS)

ROUNOOFF (Z BODY AXIS)

CONING TRUNCATION IX BOD_ AXIS)

CONING TRUNCATION (Y BODY AXIS)

CONING TRUNCATION (Z BODY AXIS)

VIBRATORY TRUNCATION IX BODY AXIS)

VIBRATORY TRUNCATION (Y BODY AXIS)

VIBRATORY TRUNCATION (l BODY AXIS)

GYRO QUANTIZATION (X BOO_ AXIS)

GYRO QUANTIZATION (Y BODY AXIS)

GYRO QUANTIZATION (l BODY AXIS)

SIZE EFFECT

VI-II



A

Z

Q

ee eoo oo eooe,ee *eeeoO0_OQ_NQON_O000000_OOO00 0

g

I

Z
0

0

2;
0
o

0

©

**oeeeeeoeooeeleoeeooeo**o •

I I I _ I _ I _ I 0

000000_0_00_0000000_0000000000000000000000000_0000
eeeeeee|oooooeoeeoeooeeoee •

IIIlll I II IIII |II

_ • ee eee oeoo

00_0000_000_0000000_00000

_0 0 00_00_ 0 00_ 0
eeee*oeeoeeeeeoe*eeeoeeeee •

O_O00000_QOONO0000000_O000
J_llllt I II IIII I1!

_ - . ooooo oo_ gd_ o god° o
. _ I IIIII II

VI-12



LU
3L

I--

C_

_n

Q.

• • • • • • • • o • • • o o e • • • • • • •

0 0.'_ 0 0 Q _0 0 0 Q _ _'_ 0 QQ 0 Q 0 Q _I" P" OQ 0 0 O ,4P

I I

oeeooeeeeooeeeeeeeeeojeooO •

Q

©

v

I

M

_ ooo _ _ _ _ _ _5o_ oo_ooj• • _55ooo

II l I I I I

QO_OOO_OO_OOOOOOOQ_O0000
_111 II N II III _ IIII

I I

_000000_000_000000_000_
oeoeeeoooooeeeeeoooeooeoeo •

w 0_000000_00_00000000_0000 N

N

Ill Ill i_llIlll l_lll
I I

VI-19



U

Q

eoeeoe oO ooeeoooeeeeoee

O0_O00_00N_OOOOQQQ_QOOQO _

!

o
r..)
v

I

_ _OOOO_O_O_OOQ_OO _ N
eeoooeoooooooeeeoeeeeeeeoe •

A

00000000_00_00000000_0000

Illlllll I II IIll III

eoooeooeooooooeoeooeeeoeoe •

_ _?_°°

VI-14



g_dddddg_gdZddgdddgdgdddd

• I

Q

eleeeeelltloleleeeeeeeelee _

m

°r-i

o

v

I--4

1

leeeellleooltleeeeleelelle _

ONOOOOOO_OO_OQOOOO_NO_ON
00000000_00_00000000_000

_ddddddddddd_jgddddddJ_ddg
IIIIIIII I II IIII III

• eeeeooeeeeeeeeoeeoeooooeeo •
w 00_000_000_0000000_00000 0

!

I I ! I

.-I

VI-15



eoeeoeeeeeeeeeoeeoo QOoo
Z O_O_O00_O0_O00OOOQO_O000

Z I

Q

0

el oil el OOIOOIOIOOIOIO

A
Q

N

W

m

m
©

v

I

£Q
<

QQQ OQ ON OQ

dd;ddddddddd_gddd_ddd_ddd; ;
I I I I I I I I

w

Q

w •

Z _[ I I I N I J I I I I I I i I I ,_ r_

',r-

VI-16



o

eoeoeoooeoeeeeooeoe eooee

__ oo?ooo_oo_o_oooo_ooooo ."

_ - ,

Q

t

<

O4

Z
0

©

0

Q

A

O0000000_O0_O_OOQO0_O000
O000000000QO_O0000000_O000

5 dd3ddggdddddJdJ3dddddddddd d
IIIIII I II IIit III

O0_OOO0_O00_O0000000_O0000

• eo_ ooooeeeeo •
0_000000_000_00000000_0000
I"11111 I I IIII III

0

_ 000000000000_00000000_0000 0

_ N

Vl-17



U

0

Q

I I

Q

,T-(

o

<_

o

Q

ddJddJdddgJddjJdjgJdddJJ'' d
I I I I I I I I

I I

_O00000mO00_O0_O0000_O00_

d_ddgg_d2_dg_dd_dgdg_g_dg 2

_ 00000000_00_00_0000000000_ I I I I I I _ I I I I I I | N I I I

VI-18



Z

o

v

>

I

>

oeeeeoeoooeoeeooooeooeeeeo •

NOQQ_QQQ_QQ_OQ_OOOQ_O000 _I _ _ N _ U

M

Q_OOOQOO_OON_O_OOQOO_QO00

Illllll! ! Jl II1! III

00_000_000_0_0000_00000

eeoeoeoeoe|oeeeeeeeoooeeoo •

r,_

J_ggddgdg'ggddd'dgddd_ddd_ 2

_r a _

0

VI-19



M

Q

Q

O0_QQO_OO_OOOQOOQ_OOQO0

o
L)
v

>
I

_q
<
E_

_NQQQQQQ_QQQNQQ_QQQQQNOOQ_ O
-- II _ ¢ 0 0 I 0

O

QNQOQOOO_QQ_QO_QQQQQ_OOOQQQOOOQQQN_QO_OQ_QQQOQ_OOQO

ddddddddddgd_ddddggdg,_dddd ;
I I I I I I I I I I I I I I I I I I

OO_O00_O00_O_O000_O0000

T ' 7

I I I I I

VI-20



u_

l-

t.u

I--

t.u
_3

ooeeoooeeeooeoo oeo ooe

I I t I I I IN _ IN

I /

Llg

C3

eeeeoe ee e oeeoooeeoee

I I _
I

°,.-4

o

v

I

<

Q

oeoeeoeeeee_eeoeeoeeeeeeee •

00000000_00_00_0000000000 0
eeoeeeeeooeeeeeeeeeoeeoeee •

JJ|||lJJ

00_000_00_0_0000_0000

I I

*eo oe*

E II IIIIl_ _ _ N I N

-= __5_5__'_5... ...

Vl-2!



U

eeeeoeeeoooeooeooooooooooe •
X 000000000000_000_000000000 0

X

Q

Q

_'_ I

a.
,.I

I

2:
0

r_

0
r,.)

0

r_

©

M

0

eoeeeeeeeeee_eeeee0e_eeeee •

/

00000000_00000o0000000o00_
00000000000000000000000000 0

IIIIIIIlllllllliltlllllll I I

IIIIII IIlll Illllllll

00_0000_000000000000000000 0
t _ I II II I N

0_000000_000000000000000_0 0
Imlllll Iltll IIIIIIIII N

0

VI-22



M

IJu

5- O OQ ¢_o OO O QO O O OQO (_ _ O O 4_O Q OO Q O O

Z
0.I

Q

0

'_ O o-.,4 O ¢_ Q_00 OQ O O 0 N,4" O O _ O O O O O O Q O r,..

lai

Q.
--i

uu
o

A

n_

o

v

m-
I

Q
_OOQ_m_OOOQ_QQOO00000_

eeeoeeeeeOoeeeeeoeeeoeoooe_00QOQOOOOQOOQO_OOOQOQOO0_

I

u') 000 0 00f_" 0 0 OQO 0 ¢) 0 _ N

00o 0 0000 0 OQ¢) 0 _ 0

-_ dddddddddddddddddgdddddgdd d
i_j I I I I I I I I I

.J
uu

00_00_000000000000000000 N
_ I I I I I I I I I I I I I I I I I I

0_000000_0000000000000000_

I_lllll IIIII IIIIit111

- __ooo
I I I I I I I I I I I I I I I I I I

v_-2_



0

ooooeo oo ooeeeeeooooooooooo o

!

J

Q

Q
_O000_O_O0_000QO_OQO_

g _ddddddd_ddddd_d_dddgdgd_
l I

°r-t

©

v

>
I

>

ONO00000_O00000_O_O000000_
O0000000NO0000000000000000

oeeoeoeeooeeeeeooeeoooeeee •

JJ|JJlJl |J||J IJJ||J|JJ

0

_ _555_5_55_555_5_55_. _.
00_000_000000_00000000000

_0_0_00_00000_000_
eeeoeeoeleoeoloee0eeeeeoel •

w _O00000_O00000NO00000000_

0

_ ,...4 O I I I a I_,,- I I i I i j,._l i i t o I I o i,,4" _,

.,.J I I

v_-_+



M

l.J

_L 0 enO0 O0 O01Jn 0000 O0 _000000000 _ f_

I I I I I I I

31.

I--
,,=I

Q

00_000 _00000 _NQO0000000 O0
I III1_ _ IIII _llllllllll

I I

n3
©

• ,-,,4

o

v

I

_d

_q
<_

A

_NOOOQO0_O00000_O000000000

Q

M

00000000_00000000000000000

ddddgddd_dddd d_Jdd_ddd_ddd d
I I I I I I I I I I ; I I ! I I I I I I I I

W

00_000_000000_00000000000

I I I

rrl ,0 N 0 0 0 ,,lr .0 _1 ,.d 0 0 0 _D ,-_ fW 0 0 0 0 0 0 0 0 0 ;_ ,,9
• o •

X: -,I

t,-

VI-25



oleo ooooooooeo eooeooooee

E Q_OOO_OO_OOOQO_QQQO_QQOQN
I l llll I

Z

Q

r_

e • • • • • • • • • • • e • • • • e • • o • e
.,_ 0 0 ,.,.4 Q 0 0 _0 _0 0 0 0 0 O _.,F,,. 0 (:_. 0 0 0 0 _ O 0 0 0 _,

: I ®l "T' ®
o.
,.,I
_AJ

==
0r,,4

o
0

I

Q

eoeeeeeeeeoeeeeeeeeeoeeeeo o

!

dddd_ddddgdgddddddddddgddd g
illlllll

..i I I I i I I N I I I I I 1'4" I I I I I I I I I _"
UJ _" ,-4 I '_
E ..J /
(.3 _u

w-26



U

IoeooooOooooeooeooooooooeeE O000QOOO_OOOOOOOOOOOOOQO_O

0

0

oo oeo eoooe oooeoeeoooo

Q

I

Z
©

Z
©
o

0

r_
N
©

Q

JJ J _ | _ J

4

O00000OO000oOOOOOOooO0_OOO o
Oooeeoeoeooooeeoooooeeooee •

lJIJOl IIJll ItIllJlll

ooo ooeoooooo_ 0 •

00_0000_0000000000oo000000 0

0_000000_00000000000000000

l_Illll Illl Illllllll
Q

o

_ 00000000000000000000000000 0

VI-27



U

oe lee oeoeeoeeoeoeeeeeee •
0_000_0000000_00000000000

°r-4

o
rj
v

I

<

Q

_ooooo ooooooooo_oooooOOoo _

ooQ o oo_o ooooN o _
ooo o oooo o0ooo o o

jddddgJddJJJJd_JjJg_d;JdJd d
II I I Illl I

0_000000_000000_000000000_
l_lltll Illll Itllltill

o
_ 00000000_000000_000000000_

Z _ _ Ill Illlll lillllllll

v_-28



O@ooeooeOoOOeeO0oooooOOOO0 •

X

5

Q

eo Ooe oeJeo ooooeeoeeeo

_O_QQQ_QOOOO_OQOQOQ_QOOOQ

°r--[

o

v

;>
I

>

<

Q

eeeeooooooeeeeeeeeeeooeoee •

NOOOOOOO_OOQOOO_OOOQQOOQ_

t

_,_ 01_ 000 I:;_C' 01%10 O00 O0 _ 0 O00 _ 000 _ W_ (_'

I I I I I I I I I I I I I I I 1 I I I I I I

--I

00_000_000000_00000000000

_000000_00o000_00o000000_

I- _ ,,_ _ 0 O0 000 _00oo o00_ o00 o o000o 0
Z _ _ I I I I I I r,- I I I I I I_ I I I I I I I I i,,11" ,,,4

VI-29



3

Q
q O0_O0_O_OO0_O00_QO0OO00O

dglddg2_ggddggggddddgggdgd
I llll_ ilIN_IlIIlIIIIII O

..q

o

v

I

>

C_

• • e • • o e • • • • • • • e • • • o • • o • • • • •• ,-_ _ 0 F.._00 (_ 0 .-_ 0 Q 0000 M_ 000000000 P" ",I"

I" I

_W
n

0_00000_00_000_000000000_

00000000_000000_0000000000

IIIIIIII Illil IIIIIIIII

_000_0_00_0000_0000_

-_ gd_ddd_gdddgd_gdddddggdddd

_ _'_n o o oO o o _00 O000_00000000000

t_ r_ I I '=4

w-5o



M

w

A
Q

eoleeo Seeieeeele$oeooooe

o

v

I

Q

eeeoeeeoeoeoeleoeoeelooeeo •

I

IIIIIIII

00_000_00000_00000000000

I

,5-

cI
-I
ti,I
e-_

_000_0_0__000_0000

Z oooolooooooooolooooooeeeoo

VI-51



O

D

O_

_o

0

0

<

M

Z

0

_ .

///

\
\
\
\
_1

/

0 T
r..)

r_

o

v

0

0

A

0,1

0 0

(oos/s_to:lotu) HOHHH X.LIDO_IHA

o

<

L_

,--4

\
\
\
\

L_

,--4

v

0

M

M

0

cq

0
0
0

0
0
0
o4

(s._o_om) HOHHH l_IOI_LIgOcI

0

0
0

0

0

0
0
0_

g

0

0

0
v

(F

<

0

D
;b

0

<

0
v

rj
Z
r..q
D

r..q

<

0

<

D

N
0
(D

D

<

0

0

©

0

<
©

0
,%

0

I

VI-32



"a
cD

,---4

O

0

[M

Z
_q

0
0

0_

°o

N

0
N

©

Ca

\
\

|

k

i

\
\

\

(0os/s_o$o_u) HOHHZ XZIDO_I:HA

E--

O
O

t

>-4

O

o_

O O
O O
o,1 ,--4

O

t_

Z
L_

g e

<

N
©
c..)

M

<

0

2:

g o

<

m

©

<

0

t_
gq

0

0

©

©

<
©

0

©
°_-I

I

vI-33



[-q
;¢

0

Z

/
/

/
/

0

_m

2:

2:
0

0

<

0
0

o rj

(oos/s;[e_otu) HOHH,'4 X_LIOO'I _tA

0
t_

o

0

0

2_
0

r_

;>
2;
©

_ o_
0 0 _D

0 LO

(s.xo:)om) HOHH_ NOI.T.ISOcI

o

o
0

o

0

r..)

©
o

r..)

t'-
I

vr-54



Figure Vl-4, the computational error for the first order scheme with this model

increases as the computational frequency is increased. This model, although

inappropriate for the assumed environment below frequencies of 400 to 500 cps,

does however set an upper bound on accuracy (a lower bound on error) as it is as

shown in Section IV to be an optimistic estimate of the error.

In this evaluation of the attitude process truncation error, no coning motion

was assumed. Coning motion was not assumed because if it occurs, it most probably

occurs at the resonance of the sensor package mounting structure or shelf. To

determine whether the motion at resonance is correlated to produce coning requires

actual testing of the structure loaded and stressed as it would be in flight. Complex

three dimensional analyses may indicate the potential existance of coning motion,

but testing is required for complete verification. To demonstrate the effect that

coning motion could have upon the computational process requirements, it was

assumed that coning was associated with the vibratory environment in this region

of 100 to 200 cps, the resonance frequency range of the assumed mounting shelf and

attachment structure. The resulting error as a function of computational frequency

and integration scheme is shown in Figure VI-8. For computational frequencies

below 100 cps, the shown drift rate would cause navigational errors of 7 kilometers

and 39 meters per second. It is seen in this figure that if this coning motion did

exist, computational frequencies of 400 cps using a fourth order integration would

be required to achieve acceptable accuracy; integration frequencies appreciably

higher would be required for lower order integration schemes.

In Figure VI-6, the roundoff error associated with the word length used in.

the attitude process is presented. The navigation error shown behaves as predicted;

it is proportional to computer frequency and is inversely proportional to word

length. The word length required depends entirely upon the frequency of the inte-

gration process necessary to maintain the round off error at an acceptable level.

In Figure IV-7, the size effect error associated with resolving the accelero-

meter data into the inertial frame is presented for both the second and fourth order

processes. The navigational errors are inversely proportional to the fourth and

the second power of the coordinate conversion frequency for the fourth and second

order schemes, respectively.

For the assumed environments, a satisfactory computational process would

consist of a second order attitude integration scheme at a computational frequency

of 50 cps. This would allow a fourth order coordinate conversion process to be

performed at a frequency of 25 cps. To balance the round off error with that of the

data processing scheme error, 32 bits of precision would be required in performing

the attitude computational process. Assuming gyros whose maximum torquing
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angular velocity is i0 degrees per second, a 24 bit (including sign) word length

computer would be required. This computational system would yield navigational

accuracies on the order of 75 meters and 0.2 meters per second. If the cb_.racter-

istics of the mounting shelf and the sensor package mounting structure are such that

coning will be encountered, the bandwidth of the sensors and the attitude compu-

tational frequency must be sufficient to follow the motion. Ifthe coning frequency

occurs at high frequencies, the computational requirements can be substantially

changed as typified by the example and the errors displayed in Figure VI-8.
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SECTION VII

LIST OF SYMBOLS

3 x 3 direction cosine transformation matrix from coordinate system (a) to
coordinate system (b)

time

angular rate

the skew symmetric angular rate matrix

specific force

velocity

position

gravitation induced acceleration

integration time interval

direction cosine element of the i th row and jth column

the error in the _ ij element

rate of change of the norm of the attitude error matrix

frequency in cycles per second

quantization level

power spectra density of angular or linear environments

maximum angular amplitude of sinusoidal oscillations

computational frequency in computational cycles per second

transfer function
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STRAPDOWN

APPENDIX A

INERTIAL SENSORS AND SENSOR LOOPS

A. Introduction

The primary purpose of an inertial navigation system is to compute with respect

to inertial space the velocity, position and orientation of the carrier vehicle. The

information necessary to perform these functions for a strapdown navigator is obtained

from measurements of the linear and angular motions of the vehicle by inertial sensors

rigidly attached to the vehicle. The strapdown computational process is a function of

the type and format of this sensor information. Therefore, a certain degree of under-

standing of the sensors as mechanized in strapdown inertialnavigators is a prerequi-

site to the development of the computational requirements.

B. Inertial Sensors

For the purpose of developing the requirements for and analyzing the computa-

tional process, strapdown mechanizations may be classified by the type of information

appearing at the sensor-computer interface. Such a classification results in two distinct

classes of strapdown systems based entirely upon the data obtained from the sensors.

The first system employs sensors whose sensitive or input axes are maintained

fixed relative to the vehicle; these sensors are called restrained sensors. The outputs

for restrained gyros are the components of the angular rate of the vehicle or its integral

relative to inertial space along the gyro input axes. The outputs for restrained accel-

erometers are the integral of specific force along their input axes. Since the attitude

information to be derived from the gyros is vehicle angular orientation with respect to

inertial space, this class of mechanization requires that the gyro data be used in the

numerical integration of the equations expressing the angular rates of change of the

desired attitude parameters. Specific gyro mechanizations that have received attention

and fall into this category are rate, rate integrating, single axis platforms, paired

pendulous integrating gyro accelerometers and, because of the similarity of output,
displaced, paired accelerometers. Restrained accelerometers that have been considered

are: force or torque rebalanced pendulous accelerometers, restrained pendulous

integrating gyro accelerometers and a concept under development wherein the force

required to center the sphere of a free gyro is used as a measurement of acceleration.

The second class of systems employs sensors whose sensitive axes are free of the

vehicle's orientation; these sensors are called free sensors. The output of free gyros

are trigonometric functions of the angular orientation of the vehicle relative to the gyro

rotor (the model of inertial space). This class of gyro provides the required vehicle
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attitude throughthe solutionof a set of transcendentalandmatrix equationswithout
integration of the angular rate equations. To date, only onetype of gyro mechanization
falls into this category, namely, the free gyro with different types of suspension:
cryogenic, magnetic, or electrostatic. The free pendulousgyro aceelerometersensor,
becauseof its pendulousityalongthe spin axis of the rotor, provides specific force
information througha measurementof its precession rate relative to inertial space.

C. Sensor Loop Mechanizations and Characteristics

Each of the sensor loop configurations listed in the previous section have certain

key requirements that must be satisfied in order to obtain a precise strapdown inertial

navigator. These requirements are summarized in Table A-I. Figures A-1 through

A-5 present the functional block diagrams of each of these sensor configurations as

they would be employed in a strapdown navigation system.

TABLE A-I

KEY REQUIREMENTS FOR DIFFERENT STRAPDOWN

SENSOR CONFIGURATIONS

Sensor Configurations Key Requirements*

Pulse Torqued Gyros (Figure A-I}

Single Axis Platform (Figure A-2)

Paired PIGA's (Figure A-3)

Paired Rebalanced

Accelerometers (Figure A-4)

Free Gyro (Figure A-5)

Wide dynamic range and a high degree
of linearity

Accurate angular encoder under extreme

dynamic conditions

Accurate angular encoder under extreme

dynamic conditions

Structural stability between accelerom-

eters mounted many feet apart

Critical sphere pattern and accurate

optical pickoff under extreme dynamic
conditions

* - all require high data resolution (low quanitzation)

- all but free gyro require sufficient bandwidth in the sensor loop to follow

significant vehicle motion

- all require accurate alignment or knowledge of the orientation of the

sensitive (input) sensor axis
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1. Angular Rate Measuring Sensor Loop Configurations

The two primary requirements for a strapdown rate sensing device are: (1) a high

degree of linearity over the dynamic range between the random drift rate of the sensor

up to the maximum angular rate of the vehicle (a dynamic range of six to eight
decades) and (2) a high information resolution or a low quantization level. In addition,

the sensor loop must have a bandwidth sufficient to follow all significant vehicle motions.

The first four sensor configurations presented in Table A-I are basically rate

measurers that attempt to satisfy the primary requirements by different approaches.

In the rate integrating gyro mechanization (Figure A-l) the pick-off on the gyro

output axis is proportional to the applied rate. This rate signal is used by the torque

rebalancing electronics to generate a current proportional to the sensed input that

retorques the float_ thus hulling the sensed input and holding the input axis of the sensor

tightly fixed with respect to the vehicle. Rate integrating gyros mechanized as described

above are used in place of rate gyros simply because the latter have not demonstrated

the required accuracy. To make a precise measurement of the input signal in the rate

integrating gyro servo loop and to convert an analog signal to digital information (for

computational purposes), the retorquing signal is broken into a series of pulses.
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In suchapulse-rebalancingscheme,eachpulse represents the integral of rate (the
magnitudeof the current times the time duration of the appliedpulse) andis termed
the sensor's resolution or quantizationlevel. Either current magnitudeor its applied
time durationcanbecontrolled as a function of the magnitudeof the input rate.
Usually current is held constantbecauseit is easier andmore accurate to control
andmeasuretime.

Severalmethodsof pulse rebalancinghavebeenconceived;they are termed
binary, ternary andpulse-width-modulatedpulsetorquing. Binary torquing is a scheme
in whichalternate positive andnegativepulsesof equivalentweight represent a zero
input. For anyother input there is a net differencebetweenthe sumof positive andthe
sumof negativepulses over a finite time period. Thenet difference representsthe
angular rotation that hasoccurred during that time period. Ternary torquing (apulse-
on-demandscheme)consistsof applyingconstantweightpulses (either positive or
negative)only as required. In the binary andternary schemes,the current switching
points are fixed suchthat the quantizationlevel (thevalue of eachpulse) is a function
of the switchingfrequencywhoseupper Hmit is presently limited by the impedanceof
the gyro torquer. A third schemeis onein whichpulsing is continuous(similar to
binary), but the width or time durationof the positive andnegativepulses is controlled
as a functionof the sensedinput. This schemehas the advantageof the binary torquing
scheme(constantpower input to the gyro), but also permits muchsmaller quantization
levels (afraction of anarc-second) for the sameretorquing current switching frequency
as binary or ternary becauseof the allowedvariability in the pulse width thus making
the quantizationlevel independentof the switching frequency.

In order to avoid the problem of nonlinearity in torquing a gyro over a wide

dynamic range (about seven decades), the gyro can be mounted on a single-axis platform

such that its sensitive axis is isolated from the high vehicle angular rates. This

mechanization is schematicmUy represented in Figure A-2. Any sensed input by the

gyro is used to rotate the platform about its gimbal axis which is parallel to the input

axis of the gyro. Angular information (the integral of rate) is derived from a pick-off

mounted on the gimbal axis. Either an incremental encoder with a "counter" or a total

angle encoder with a subtraction of sequential readings can be used to generate incre-

mental angular changes. The quantization error is now associated with the encoder

rather than with a gyro retorquing servo loop. Both optical and electrical encoders

have been applied to this application.

The gyro sensors used in these two schemes rely upon the angular momentum

vector of a spinning body as the physical inertial reference° Three other sensor

mechanizations can also be used to measure angular rate: vibrating momentuzn (tuning-

fork), nuclear, and laser gyros. The vibrating momentum gyro's major problem is

achieving a good null stability; the laser gyro requires much additional research work

to increase its ability to detect differences in frequency using small optical path lengths;

while nuclear gyros require improvements in many areas, readouts being one.
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In a mechanization using six pendulous integrating gyro accelerometers (PIGA),
each system measurement axis consists of two PIGA's whose input axes are anti-

parallel. The PIGA's are packaged as close together as possible so the two sensors are

essentially making measurements at the same point. Linear velocity and angular dis-

placement data as shown in Figure A-3 are derived by adding and subtracting the outputs

of the angular encoders of the two paired sensors. Any angular rotation of the float

about the gyro output axis due to either sensed linear acceleration or angular rate is

again used to control rotations about a gimbal axis so as to null out the output axis

error. Again the quantization error is associated with the angular pickoff.

Another mechanization that also uses paired accelerometers employs force or

torque restrained devices whose input axes are parallel but separated by a large and

precisely known distance. The sums and differences of the output of each pair as

shown in Figure A-4 provide a measure of the incremental angular change about an
axis perpendicular to the plane of paired input axes and a measure of the linear

velocity change in the plane of the paired input axes. The quantization error is

associated with the sensors' retorquing or forcing loops which are similar to those

previously described in the rate gyro scheme. This scheme requires that the sensors

be linearly but rigidly displaced by a large amount. For many applications_ the

accelerometer bias and the stability of the displacement are so poor that the required

displacement must be greater than the diameter of the vehicle to determine angular
rates to the level of accuracy required.

2. Free Gyros

A free gyro maintains an inertial physical reference stabilized with respect to

inertial space; direct observation of this reference yields the vehicle attitude. The

inertial reference is usually the angular momentum vector of a rotating sphere sus-

pended in an evacuated spherical container. After a spin-up, torquing is terminated

and the sphere is allowed to coast. The suspension scheme for the rotating sphere

(cryogenic, magnetic, or electrostatic) is not critical to the concept of the sensor

configuration; it is only important with respect to performance. Attitude of the vehicle

relative to the angular momentum vector can be computed by inscribing a pattern on the

rotor such that the timing of series of lines crossing under an optical pick-off is a

function of the angle between the pick-off and the spin vector of the rotor; from this the

"direction cosine" or attitude of the spin axis relative to the pick-off can be computed

(Figure A-5). A minimum of two pick-offs are required to define the orientation of the

spin vector to the vehicle. Two free gyros whose spin axes are nominally perpendicular

are sufficient to define an inertial reference from which vehicle attitude can be computed.
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3. Accelerometers

The accelerometers usually considered for use with either a free gyro configura-

tion or the restrained rate measuring gyros are the forced or torque-rebalanced

class. Their rebalancing process and electronics are identical to those employed with

terque-rebalanced gyros. Some consideration has been given to the use of a free gyro

as an accelerometer by (1) measuring the force necessary to center the spinning sphere

(force-rebalancing) or (2) unbalancing the accelerometer along the spin axis and meas-

uring its precession rate relative to other balanced free gyros.
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KINEMATIC

APPENDIX B

EQUATIONS AND ALGORITHMS

A. Introduction

The function of an inertial navigator is to indicate attitude, velociy and position

of a vehicle with respect to a selected reference frame using information obtained from

onboard instruments. To perform this function, a solution of a set of three first order

nonlinear differential equations must be mechanized in a digital computer to obtain

position. A restrained gyro mechanization requires an additional set of differential

equations to compute attitude. These equations can be solved by many different numer-

ical integration algorithms of varying degrees of complexity and accuracy. The schemes

evaluated in this study are presented in this appendix.

The measurements of linear and angular motions of the vehicle relative to

inertial space are obtained in vehicle coordinates for a strapdown navigator because

the inertial sensor's readouts are rigidly attached to the vehicle. This necessitates

that (1) the gyro outputs be used to compute the attitude of the vehicle relative to the

computational frame, and (2) the computed attitude be used to resolve the accelerom-

eter outputs into the computational frame where they are doubly integrated along with

a gravitational model to yield vehicle position. The kinematic equations, expressed in

vector-matrix notation, that must be solved are:

(Vdt IT: (t) ] - [T I (t) ] • [_2 (t) ] (B-I)
S

FI(t) = [TsI (t) ] • _s (t) (B-2)

t

VI(t) = VI+o f (t) - _I (_)} dt (B-3)
O

t

I (t) : R I + f V I (t) dt 03-4)
0

0

For simplicity, these equations have been expressed in an inertial computation frame;

3 x 3 matrix, [ T_ (t) ] is used to define the orientation of the vehicle
%-

a or sensor

readout frame relative to the computational frame. The elements of the skew matrix,

, are the components of the angular rate of vehicle sensor readout frame relative to

the inertial frame. The functional mechanization for the solution of these equations is

shown in Figure B-1. In this figure, the gyro data processing function for restrained
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Figure B-1 Functional Mechanization for the Solution to the Navigation Equations

gyros would consist of extracting angular rates (as required by equation B-l) from the

integral of rate (available from the gyros). In a free gyro mechanization it would be

a synchronization of the outputs from the multiple pickoffs of these gyros. The

accelerometer data processing would consist of extracting specific force from its

integral for both restrained and free accelerometers. For all sensors, compensation

for deterministic errors would be applied.

Although these navigation equations have been expressed in an inertial frame,

considerations of computational simplicity with respect to a specific mission may

suggest a different computational frame. Satellite navigation for instance may well be

best accomplished in a rotating frame. However, such considerations do not affect the

computational requirements because such a frame differs from the inertial frame by

at most a transformation matrix whose time dependency is computable.

The following section describes the integration schemes, sensor data processing

schemes and attitude parameters that have been investigated in this study. In the
presentation of the various integration schemes, the required inertial measurements

of angular rate and specific force will be assumed to be available; the following section

describing sensor data processing schemes will describe the techniques for obtaining

rate and specific force from their respective integrals that is in actuality the output of
the inertial sensors.
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B. Integration Algorithms

The solution of equations B-1 through B-4 requires the numerical integration of a

set of first order, nonlinear differential equations because no general closed form

solution to these equations is available. Many numerical difference schemes can be

used; rectangular, second order Runge-Kutta and fourth order Runge-Kutta algorithms

were considered in this study.

The difference equations for each of these schemes for computing attitude in a

restrained gyro system by solving equation B-1 can be expressed for one integration

step as:

c . I[1] + [G] I (B-5)[Tb]n+l = [Tb In

where [G] is a weighted average of the angular rate components at various points within

the integration step coupled with higher order corrections for the Runge-Kutta procedures;

[ T_ ] denotes the direction cosine matrix defining the orientation of the vehicle body
relative to the inertial computational frame.

With time as the independent integration parameter, At is defined to be integration

step size. f_1, f_2, and _ 3 denote in the following equations, the angular rate matrices

at the beginning, at the midpoint and at the end of the integration interval. When

mechanized within the computer using a matrix multiply subroutine, equation (B-5)

takes on the following forms for each of the three integration schemes considered:

(1) Rectangular (Euler)

c = [T c /[1] + [f_ ] At} (I3-6)[Tb ]n+ 1 b]n 3

(2) Second Order Runge-Kutta

c =[TC +I{ }[Tb]n+l b]n 2 [K1 ] + [K2] 03-7)

where

:[K1] 1

: { +[K1] } • [aa] t
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(3) Fourth Order Runge-Kutta

c c + 1/6 { ] + 2[M2][Tb]n+l = [Tb]n [M1 ÷

where

2[M3] + [M4] } {B-8)

C •

[M1] : [Tb] a [_1] At

{ o +! }: [Tb]n 2 [M1] "[a2] at

= + - ] "[_ ]At[Tbln 2 [M2 2

[M4] : [Tbin [M3 3

These equations state the numerical procedure used for each integration step.

The inputs to each step are the last calculated orientation, available either as an initial

condition or from the previous computation, and the angular matrices at the specified

times, [ _i], that must be available or derived from the output of the triad of gyros.

The six differential equations defining the position and velocity of the vehicle with

respect to the computational coordinate frame are presented as equations B-3 and B-4.

Beginning with the integral of specific force in the computational frame (AV c) and
using fourth order Runge-Kutta as the integration algorithm, the numerical procedure

for solving these equations for one integration step, At, is:

ve _c -cn+ 1 = + AVn+ + A_c (B-9)n _ n+ At

_16 At [gI _n ) + 2{I (CI)+ 2_I (_2)+ _I _3)]

_I = + At At [5AV At + AV + At
n+l n n 6 +-_-

-At 1_I (_1)+ _I (_2) + 31 (_3)} ]

where AVI +At and AVIn+ At are the integral of specific force over the first half and

second half of the integration step, respectively; C j is an intermediate position
vector defined by
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c---1 = _In + 12 _tVIn

1 At_l (_1) ]+ IVn

ca : _I+ At[ + "V-I Atn n+_ 2
2

The general form for the potential used in computing gravitational forces,

within the Earth's sphere of influence is

U = _//R 1 - J p (o) (sin0) +
n n

n:2 n=2 m=l

jOn)n (sin O)cos [m(k- An(m))] 1

where

C
g,

(B-IO)

U is the potential function,

is the product of Earth mass and the universal gravitational constant,

R
e

R

is the Earth's equatorial radius,

is the geocentric radius,

is east longitude with respect to Greenwich,

p (m)
n

J
n(m)

J
n

(m)
X

n

is geocentric latitude,

are Legendre Polynomials,

are zonal (latitude dependent) harmonic constants,

are tesseral (longitude and latitude dependent) harmonic constants,

are longitude constants of the J (In).
n

This expression is normally differentiated with respect to the directions of the

chosen coordinate system to yield the gravitational force per unit mass on a vehicle at

the location 0, k, R. Recent fits to ground observational data of orbiting satellites
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haverefined the knowledge of the constants up to the fourth order. The second

oblateness harmonic, J2, is necessary in all but the crudest navigation systems,

since it can cause perturbations from the spherical case of several miles over a frac-

tion of an orbit. The higher order terms are necessary for more accurate systems.

Reference B-1 shows short term perturbations of over a mile within one orbit due to

the J2 (2) and J3 (3) tesseral terns.

Consideration has been given to multi-step integration schemes of the predictor

type, such as the Adams-Bashforth and Milne schemes, or corrector types, such as

Adams-Moulton_ Milne-Simpson, and Milne-Hamming. However, these multiple step

schemes have some characteristics that must be carefully evaluated in trade-off

studies from the system standpoint before applying them in space navigation systems.

The corrector forms are most accurate, but must be used in conjunction with a predictor

method. Care must be taken in selecting a method, since some of them, though accu-

rate in minimizing local truncation error, are somewhat unstable to the propagation

of computational errors (Reference B-2). Single step methods, on the other hand are

stable; the Runge-Kutta algorithm "displays a most interesting ability to follow a

solution without increasing its error" (Reference B-3). The one-step methods are

considerably less complex and require less computer storage. They are self-starting

and adaptable to changing integration step sizes, whereas the multiple step methods
require a starting procedure (usually with a one-step method) for initiation.

For some applications it may be desirable to use an incremental Digital Differential

Analyzer (DDA) rather than a whole number, general purpose digital data processor

(DDP). In utilizing a DDA, angle(or velocity in the case of accelerometcrs) is logically

used as the independent integration parameter rather than time. Each sensor pulse, or

a fixed number of pulses, is allowed to accumulate until a specified level is reached, at

which time an integration step is performed. Because the multiplications in the angular

motion difference equations are between direction cosines and the incremental angular

change, only additions or subtractions are needed because the angular change is always

constant. DDA's readily lend themselves to rectangular integration processes although

second order schemes such as modified Euler integration (second order Runge-Kutta)

can be implemented without undue computer complexity.

C. Sensor Data Processing Techniques

1. Restrained Gyros

The integration of the angular equations of motion requires rate information

while the gyro pulse data represents the integral of angular velocity. The output of the

gyros must, in effect, be differentiated with respect to time to establish compatibility

between the gyro outputs and the integration process. If the gyro output data are
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treated as incremental angular rotations and this angular change is assigned vector

properties, the accuracy of the rate extraction process (_ = _/At) and hence that of

the solution of equation (B-l) is limited to second order, independent of the use of

higher order integration schemes• This has been sometimes construed to be a funda-

mental accuracy limitation of strapdown systems associated with the commutative

error of assigning vector properties to incremental rotations.

The incremental outputs of the gyro, however, are not angular rotations in the

true sense, but more correctly the integral of the angular rate components as a

function of time and these integrated quantities are correct at the data sampling in-

stants to within the accuracy of the integrating sensor• Thus, an inverse estimation

process that derives the angular rate components (whose integrals best fit the data)
can be used to provide rate data of higher order accuracy at specified points in time for

use in higher order numerical integration algorithms.

a• Development of Angular Rate Extraction Process

The output of an integrating rate gyro, if assigned vector properties gives rise

to a set of computed direction cosines which, by the mean value theory, lead the true
set of direction cosines by some phase angle often termed the third order commutivity

error. A more accurate processing scheme consists of (1) fitting an nth order

polynomial to the gyro outputs over an interval of time using multiple samples of the

gyro output during that interval and then (2) extracting the rate information from the

polynomial which can be differentiated analytically• The following analysis demon-

strates that errors arising from the use of a second order polynomial when imple-

mented with fourth order Runge-Kutta are of fifth order, consistent with the accuracy

of the fourth order Runge-Kutta integration scheme. The same procedure may be

extended to any order integration algorithm•

The fourth order Runge-Kutta integration of the angular rate equations (equation

B-8) may be rewritten for each integration interval as

= + 1 [T] {t [_ ] + 4 ][r]_+l [Tin T n 1 [_2

+ ([_1] • [_2] + [_2 ]" [_2] +

1
+ 7 ([_ 1] " [r_.] • [_2] + [_2]

+__._([_211]. [_2] . [_2] • [$3]

+ [_3]

[_.] •

• [_21

)At4}

) at (B-_I)

[ _3 ] ) At2

• [_3] ) At3

The above equation requires values of the angular rate matrix at the beginning, midpoint,

and end of each integration interval, [_ 1 ]' [ _ 2 ]' and [_ 3 ]' respectively.

B-7



Therequired rate estimatesare obtainedfrom the following gyro dataprocessing
schemewhich assumesthat (1) the frequencyof angular motion to be followedby the
integration schemeis lower than that of the attitude computational frequency and

(2) that the integral of angular rate component along each body axis over any integration

interval can be represented as a polynomial expanded in powers of time about the

beginning of the integration interval (to) (for convenience, t o = 0):

t

0 = f _dt = at + _t 2 (B-12)
O

During each integration interval, the value of @ is obtained twice from the sensor,

first at the midpoint (At/2), again at the end of the interval (&t)

 t/2

02 f co dt
0

zXt

o3 = f
O

such that the coefficients of the polynomial in Equation (]3-12) may be evaluated in

terms of 02 and 03:

1 1
a = _ (402 - 03) _- 2 (2 03 - 4 02) 03-13)

(At)

Estimates of components of angular rate denoted by _ ' (where ¢odenotes the true rates

components) at any time within the interval can then be obtained by substituting these

coefficients into the derivative of the 0 polynomial (equation B-12):

, = 1_!_ 4t - 202) (B-14)(t) = a + 2 [St At (402 - 03) + -- (03
At 2

For convenience define

A02 = 02 and A03 = 03 - A02 (B-15)
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Substituting these values into Equation (]3-14) and evaluating that equation at times 0,

At/2, and At as required by the fourth order Runge-Kutta integration scheme (equation

B-11) yields the estimated rates at these times along the body axes:

1
_' (t----0) = ¢o' = -- (3A - (]3-16)i li At 02i A03i)

_'i (t=_) = ¢o'2i -- _I (_ 02 i + A03i )

1
w:l (t=-At) = ¢o'3i =-_ (3A03i - A02i )

i = x, y, or z body axis

b. Evaluation of the Gyro Data Processing Error

The accuracy of the gyro data processing scheme (Equation B-16) may be

determined by expressing the angular rate component along a body axis as a polynomial

expansion in time to any desired degree of accuracy:

o_.l = a0 + alt + a2 t2 + a3 t3 + a4 4 + .... (B-17)

This expression may then be integrated to obtain A02 and A03 thus simulating the
outputs of a perfect gyro loop:

t
i+l a

A0.1+l = f ¢odt a0 (ti+l- 2 (ti+l - i ) + ....= ti ) + _fl 2 t 2 (B-18)
t.

1
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and the results substituted into Equation B-16 to obtain the estimates of angular rate,

' that the computational scheme would compute:

, = a2(t2 - _ - _¢°1 a0 + altl + 1 At 2) + a3 (t 1 tl At2 3 At3 ) (]3-19)6 2 16

(t_ 2 At 2 3 _ __7 At4 ) + ....+ a4 - tl -4-tl At3 40

¢°2 = a0 + al(t 1 + At 2 1 2 3 22 ) + a2(tl + tlAt +-_-At ) + a 3(t + _-t 1At

+---5t At 2+ llAt3 (t41 3At+ 5 2At2+ II2 1 1--6 ) + a4 + 4t 1 t 1 -_-t 1At 3

23
+ 40 )+ " " "

The true values of angular rate, ¢oI, ¢o2, and ¢o3, are available from Equation

(B-17) by substituting t = t1, tI + At/2, and tI + At, respectively. Ifthe error in

the estimated values of rate (¢_') is defined to be the estimated value minus the true

value (¢o' - _), the errors in each of the estimates c = (¢o' - ¢o),at the beginning,

midpoint, and end of the integration interval are

el = _At 2 _6a2 +1 a t 2 + . . ) _At 3 ( 3 32 3tl + a4 1 1-6 a3 +-4-a4tl (]3-20)

+ •. + )+
1

_2 = At2 (_ a2
1 1 2

+_-a 3t 1 +_-a 4t 1

1
• . ) + At 3 (la3 +-2-a4tl

4 11

+" • -)+ at "SOI--a4+- • .)+

1 2 + . . . ) _At 3 5 + 5e 3 = _At 2 (la 2 +-_a 3t I + a 4t I (_-_ a 3 -_a 4tl+ • . . )

17
+ at4(-_% + .)+.
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These equations show the error in approximating _ about any axis at any of the three

required times in the integration interval is proportional to the second and higher

powers of the integration interval. This is to be expected since only a two-term

polynomial (Equation B-12) is used to extract rate from its integral.

c. Evaluation of the Effect of the Gyro Data Processing Error Upon

the Accuracy of Fourth Order Runge-Kutta Integration

Although the error in the rate estimation presented in the previous section is not

fourth order, the third and fourth order terms cancel when they are substituted into the

fourth order Runge-Kutta integration process, thus preserving the fourth order accuracy

of integration process. This favorable cancellation occurs because the value of the

integral of rate obtained from the gyro is not changed by the errors in the rate

approximations as may be seen by examining the cancellation, term by term, in the

following analysis. For convenience of analysis, Equation (B-11) may be rewritten as

[T]n+l = [T]n ++[T] [A + B + C + D] (B-21)

where

A = ([9`1] + 4 [9`2]+ [9`3] ) At

B = ([_1] • [_2] + [9`2] " [9`2] + [_2] " [9`3] )_t 2

1
C =-_([9`1] " [9`2] " [9`2] + [9` 2] " [9`2] " [9`3] )At 3

= 1
D T([9`I] • [9`2] • [9`2] • [9`3] )A#

The error in the A summation of rate matrices times the integration interval of

Equation B-21) is:

EA =At ([9-1] + 4 [_ 2] + [9` 3] - [_1] - 4 [9`2] - [9` 3] ) ('B-22)

=At([_l] + 4[e2] + [e3] )
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Since the rate matrices are skew-symmetric, the error in the rate matrices are like-

wise skew-symmetric. The error in the A summation can thus be analyzed one axis

or one element at a time using Equation (B-20).

EAi = AtEli + 4Atc2i + At£3i (B-23)

where

i = X, Y, or Z body axis

Substituting Equation 03-20) into 03-23) and collecting terms demonstrates that the

error in the A summation is proportional to the fifth power of the integration interval

EAi = O (At 5)

After the matrix multiplication indicated in the B summation is performed, the

diagonal elements of the resulting matrix are composed of the summation of the

products of the rate along the same body axis at different times (the subscripts i and j
denote different body axes; the subscripts 1, 2 and 3 denote different times):

B - At2 { + + ) (B-24)rm (C°il ¢_i2 _i2 ¢_i2 ¢_i2 _i3

+ (_1 ¢°j2 + ¢°j2 ¢_j2 + _j2 ¢°j3 ) }

While the off-diagonal elements are the summation of the products of rate about

different body axes at different times:

Bmn = At2 {_ii¢_j2 + ¢oi2¢oj2+ ¢_i2¢oj3} 03-25)

where

n and m = 1, 2, or 3 and are the usual row and column specification of the
elements of the rate matrix with m # n

and

iandj = x, y, orzwithi _j.

The error in the B matrix is now easily analyzed element by element in terms of

the functional form of each element (of the rate matrix). Since the diagonal elements
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are composed of two similar groupings of terms, only one need be considered.

Equation (]3-24) the B summation diagonal error (EBD) can be expressed as-

{ } { }EBD = At2 12 ¢°il + ¢°i2 ÷ _i3 -&t_i2 _il + ¢_i2 + ¢°i3

From

(B-26)

At2[_i2 I_il + _i2 ÷ Ci3} + _i2{_il ÷ ¢°i2 ÷ _i3 }

+ _i2{¢i1+ _i2 + _i3} ]

The error in the last term is immediately seen to be of O(&t6). Substituting Equation

{B-17) for the rate and Equation (B-20) for the errors into the first two terms of the

above equation and collecting terms, the error in these terms is demonstrated also

to be of O(At6).

The error in the off-diagonal elements (Equation B-25) can be also expressed
as:

i ! ! T tEBOD At2 (¢_il + ¢_i2 ) ¢°j2 += _i2 _j3 (¢_il + ¢°i2) _2 + } 03-27)

= { + )+ +&t2 _j2 (_21 ei2 Ej2 (¢°il _2 ) + ei2 _3

+ _i2ej3 + ej2 (eil + ei2 ) + ei2Ej3}

The error in the last two terms is of O(At6); when the true rate from Equation (B-17)

and the errors in estimated rate from Equation (B-20) are substituted into this

equation, the error in the first four terms of Equation (B-27) is shown to be of O(At5).

No further detailed analysis is necessary to establish that the error in the C and

D terms is at most fifth order since the error in approximating each [ _ ] is proportional

to the second power of the integration interval, and the C term is multiplied by &t 3

and the D term by At 4. The errors in these terms are at most O(At 5) and O(At6),

respectively.

2. Restrained Accelerometers

In a strapdown system, the accelerometers are fixed in the rotating vehicle

frame and must be resolved into the computational frame using the results of the

attitude computations. One method by which this transfer of data can be accomplished is

c : b (B-28)
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This procedure, however, has the disadvantage of introducing a phase angle error

Similar to that for the comparable gyro data processing scheme. A more accurate

procedure, suitable for the use with higher order integration of the position tracking

equations, involves three steps: first, the estimation of specific force (in a manner

similar to the gyro data processing) at the beginning, midpoint and end of an interval

obtained from the integral of specific force; second, the resolution of the specific force

into the computational frame using the computed transformation matrices at each of

these times; third, the integration of specific force in the computational frame over

this interval. The entire data processing scheme can be summarized in the following

equation:

{ ; ° °AvC = 1 (3 IT ] + 4 [Tb] 2 - [Tb] 3) " AV (B-29)j 6 1

÷ (3 [T;] 3 + 4 [T;] 2

when the subscripts 1, 2, and 3 refer to the beginning, mid-point, and the end,

respectively, of the time interval of interest; AV 2 and AV 3 denote the accelerometer
outputs over the first and second half of the time interval respectively.

Using this accelerometer data processing scheme, the rate at which the

accelerometer data can be transferred to the computational frame is one-half the

attitude matrix computation frequency. Employing this scheme with 4th order Runge-

Kutta integration, the position-tracking computations must be carried out at multiples

of four times the attitude computation integration interval; the transfer of data to the

computational coordinates system requires two attitude computation intervals to obtain

one velocity increment and the 4th order Runge-Kutta integration scheme requires two

of these velocity increments (Equation B-9). If it is desired to increase the position-

tracking integration interval beyond that of four intervals, the velocity increments are

resolved into the computational frame every two attitude computation intervals and then

summed for the appropriate length of time in the computational frame.

3. Free Accelerometers

The outputs of free pendulous gyro accelerometers are the unit vectors describing

the orientation of the spin axes of the instruments in the body frame. These vectors
must then be resolved into the inertial frame using the transformation matrix [TIs (t) ]

derived from the gyro data and their derivatives obtained. The components of specific
force are extracted after this transformation and differentiation process. The transfer

of the data to the inertial frame presents no particular problems, simply a matrix

times a vector process. The extraction of specific force however is more complicated
as it requires that the set of linear differential equations (presented in Table B-I) be
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solved. This set of equations, however, is degenerate and their solution requires

either a best fit procedure based on a least squares or similar criteria (Reference B-4)

or logic to choose from among the equations an independent set of three that can be

directly solved at the possible expense of accuracy. After specific force is obtained,

it must be integrated so as to yield the information required by the position tracking

equations.

D. Attitude Parameters for a Restrained Gyro Attitude Reference System

In a restrained gyro system, the angular relationship of the vehicle to the non-

rotating computational frame must be computed from the gyro outputs. The angular

orientation of the rotating frame with respect to the inertial computational frame can be

expressed by many different classes of parameters. Three classes of predominant
interest are

(1) a three attitude parameter set: three Euler angles representing successive

rotations about three body-fixed axes in a specified sequence,

(2) four attitude parameter sets: quaternions, Cayley-Klein parameters or

four Euler angles, and

(3) a nine parameter set: direction cosines relating each of the vehicle axes to

the three computational axes.

All three of these schemes involve the solution of first order non-linear differential

equations to describe vehicle angular motion.

Euler angles have been used extensively to analyze and describe aircraft angular

motion. A typical set of equations for an x-y-z rotation sequence is shown in Table B-II.

The principal advantage of Euler angles is the ease by which one can relate the mathe-
matics to the actual physical orientation; i. e., pitch, roll, and yaw angles. Although

only three parameters and, thus, three integrations are necessary, the required sine

and cosine functions and the nine conversion equations to obtain [ T Is (t) ] make the
solution of these equations more difficult and time consuming than the other two methods

for any difference scheme of third order accuracy or better. Also, there is a singular

point analogous to the gimbal "lock" problem on an electro-mechanical three-gimbal

platform; when the second of the three sequential angles approaches ninety degrees, the

other two axes of rotation become near collinear and the rate of change of these two

Euler angles becomes indeterminate. Logic is necessary to prevent this singularity by

either changing to a different angle sequence or adding a fourth angle to the sequence

(analogous to a four-gimbal platform) along with logic to account for redundancy of

information. This leads to the more general class of four-parameter or quaternion

description of orientation, described below.
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4

TABLE B-II

ANGULAR EQUATIONS OF MOTION FOR THREE CLASSES OF PARAMETERS

It EulerAngle Method; integrate the following three differential equations:

= sec 0 (¢_ cos¢ - ¢_ sine)
i x Y

= _ sine+ _ cos ¢
x y

; =o_ +tanO(¢o sine-co cos¢)
z y x

Where _b, 0, ¢ are Euler angles about the body x, y, z axes. (The above

equations define a _b-0-¢ sequence). _. (i = x, y, z) are the measured body
• . 1

rates. Logm must be mcluded to switch variables when 0 approaches _- w/2.

Also required are the nine equations to obtain [ T:] :

[T:(t)] =

[ ," ,I ]

cos 0 cos_b Ism¢ sin_b - sin0 cos¢ cos_b cos¢ cosq_+ sin0 cos_b sine
I

/sin 0 lcos¢ cos 0 lI -sin ¢ cos 0

L-COS0 sinqSlsin ¢ cos_+ cos¢ sin0 sinq5 Icos¢ cos¢- sinCsin 0 sin _b

2. Direction Cosine Method, integrate the following nine differential equations:

d [TsI TI(t)] . [_](t)] :[ s

where

=

O -¢o ¢o 1

z y

¢o 0 -¢o
Z X

-¢_ ¢o 0
y x

no logic or additional equations are necessary
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TABLE B-II (continued)

ANGULAR EQUATIONS OF MOTION FOR THREE CLASSES OF PARAMETERS

3. Quaternian Method, integrate the following four differential equations:

= ¢o +q2 +_io -1/2 (ql x COy q3 ¢°z)

ql = I/2 (% _x + % _y- q2 %)

= ¢o + ql %)q2 1/2 (-q3 _x + qo y

q3 -- 1/2 (q2 _x - nl _y ÷ qo _)

where q0' ql' q2' and q3 are the quaternians.

Also required are the nine equations to obtain [ T:]

[ T:(t)] =
- 2

q0 2÷ ql 2-q2 2-q3

2 _0 q3 + ql q2 )

2 ((tl q3 - q0 q2 )

2_1 q2 - q0 q3 )

2 2 2
q0 - ql + q2 - q3

2 (q3 q2 + ql q0 )

2(q0q2 + qlq3 )

2 (q2 q3 - q0 ql )

2 2 2
qo -ql -q2 + q3 2

Direction cosines are a straightforward method of describing orientation of one

axis frame with respect to another. Solution of the difference equations involves only

multiplications and additions, and the resulting nine numbers can be used directly as

elements of [ WsI (t)] in resolving the sensed acceleration vector into the computational

frame (Table B-f1). Thereis no singularity point or region prone to computational
errors as is the case with Euler angles. However, since only four of the nine cosine

numbers are independent parameters_ computational errors in the integration of all

nine lead to non-orthogonality of the matrix [T_ (t)]. For short-term applications,
such as boost and injection of a missile or satellite, no correction is necessary for

this non-orthogonality. The error in solution of Equation (B-l) is no worse than if the

matrix [ TI (t)] were orthogonalized regularly during the computations. When the
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matrix [TI (t)] is re-aligned in long-term applications,such as by stellarobservations

or orbital gyro-compassing with a vertical sensor, logic should be included to insure

that the sum of the squares of each row and column of [ T I (t)] equal unity. This is

normally considered part of the alignment computation.

The quaternion method of describing angular orientation is based upon Euler's

theorem that any real rotation can be expressed as a single rotation through some angle

about a fixed axis. The four variables consist of a scalar, representing the magnitude

of the angle, and a unit vector, representing the axis of rotation. It has been shown

that geometric derivation of the Euler parameters and a derivation from a complex-
number approach (Cayley-Klein parameters) both lead to the same set of equations

describing the rates of change of the four variables as a function of the angular velocity

components (Reference B-5). Solution of these equations requires only multiplications

and additions, as in the case of direction cosines, and only four integrations. One of

the four parameters is not independent, subject to the unit vector condition of the

direction of rotation. Thus, similar orthogonalization considerations exist as in the

direction cosine case, although with somewhat less logic when it is desired to re-align

the attitude computations. Fewer instructions are required to implement the solution

of quaternion differential equations of angular motion than the direction cosine equations.

However, nine additional equations are necessary to convert the four quaternion param-
eters into the matrix [WsI (t)] for use in Equation 03-2). Table B-H gives a typical set

of quaternion equations which would be implemented in the computer. Overall require-

ments differ only slightly between four- or nine-parameter systems from the standpoint
of computational requirements.
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APPENDIX C

CLOSED FORM SOLUTIONS FOR ANGULAR MOTIONS

The attitude computations of a strapdown system (using direction cosines as

parameters) consist of solving the first order, nonlinear, matrix differential equation:

d T I (t)] [_]_-_ [T_(t)] = [ s " (c-i)

Because there is no known general solution to this equation, it must be numerically

integrated in real-time by using the data supplied by the gyros. However, analytic

solutions can be obtained for special classes of motions. Solutions have been obtained

and are presented herein for rotations about an axis with a fixed spatial orientation
and for a class of motions termed coning in which equal rate amplitude sinusoidal

oscillations ninety degrees out-of-phase appear along a pair of orthogonal axes with

an arbitrary constant rate along the third axis of the triad. These solutions provide

the essential means, the absolute reference, for evaluating the functional characteristics

and the magnitude of the errors incurred in the solution of equation (C-1) by open loop

numerical integration.

A. Solution for Rotations About a Stationary Axis

A solution can be obtained by means of a matrix algebra method applied to the

set of simultaneous linear differential equations with constant coefficients.

This matrix solution has two unique advantages in using it as the reference model for

an error evaluation of the numerical integration processes:

1. It requires only a single formal integration of a scalar quantity, the

magnitude of the angular rate vector, as opposed to nine direction cosines

and reduces the digital simulation running time and cost.

2. It provides a unified solution to the problem valid for any angular rate vector

whose magnitude function is at least piecewise integrable with respect to
time over the interval of interest and whose spatial orientation is time

invariant.
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In the presentation of the solution upper case letters will be reserved to represent.

matrices and scalar quantities will be represented by lower case letters. The symbol

I will be used for the identity matrix.

The restriction of a fixed spatial orientation of the axis of rotation (defined, with

respect to the body axes, by its direction cosines: 11, 12, 13) reduces the general
expression for [ _ ] to:

[_ ] = 0 -13 12 co(t) = Lco(t) (C-2)

1 0 -I
3 1

-12 11 0

when co(t)is a scalar function of time. Using equation (C-2), equation (C-I) may
be rewritten as:

d/dt W = T Leo(t) (C-3)

Defining 0 such that:

dO/dt = co(t) (C-4)

the independent variable, t, in equation (C-3) may be replaced with 0.

d/dO(T) = T" L (C-5)

Equation (C-5) is easily solved for T by analogy with the solution of an ordinary

differential equation of the same form (by assuming a matrix power series solution

in t and solving for the coefficients):

W (t) = Ke L0 (t) (C-6)

where:

t

0(t) = I co(T)dT (C-7)

O

The solution for T(t) is now complete although not in a very useful form for

evaluation. The remainder of this section will be concerned with developing an ex-

pression for the solution as a function of the initialconditions, L, and 0 (t). The
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steps will consist of: first, defining the matrix exponential appearing in equation (C-6)
in terms of scalar exponentials; then, the matrix K will be defined in terms of the

initial conditions; and finally, the result will be reduced to the form specified above.

The exponential of a matrix appearing in equation (C-6) is defined in terms of
the series expansion for the exponential function, hence:

o0

L0(t) _..e =

i=o

[ L0(t)] i
i! (c-s)

At this point it is convenient to define matrices _:

eigenvalue of L, _ j, having the following properties:
j, one associated with each

_i,_j = 6ij _. which implies_, n = _. (C-9a)] J ]

Z_. = I (C-9b)
j J

_ _: = L (C-9c)
J J J

where 6 ij is the Kronecker delta. The matrices_- i are called the constituent idem-
potents of the matrix L. The development of the definition of the idempotent matrices

is presented in Reference C-1. *

Using equation (C-9c), equation (C-8) may be rewritten as:

eLO(t) = _ oi(t)i._ i (C-10)

i=o j=l

and using the orthgonality properties of the _'_.'s, (equation C-9a), this becomes
]

L 0(t) 0i(t) i
e = _ i! _ X " _:" (C-11)

i=o j=l J J

*Reference C-I Frame, J.S., "Matrix Functions and Applications, " Part II

IEEE Spectrum, April 1964 pp 102-108.
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Since the summation over j is finite, the order of the summations may be interchanged
to give"

3 co i i

L0(t) _je = _ Z 0 (t)_j (C-12)
j=l i= ° i '

The second summation is merely a power series expansion for the exponential function,
hence this expression may be rewritten as:

L0(t) 3 _ 0(t)
e = _ _.e J (C-13)

j--1 ]

Equation (C-6) may now be rewritten using the expression for the exponential of

a matrix (equation C-13).

3 X.0(t)

T(t) = K Z_je ]
j=l

(C-14)

From equation (C-7) it is seen that 0(t) I t=o = 0 and inserting this in the expression
for T(t) (equation C-14), one obtains:

3

T(O) = K __j
j--1 J

(c-15)

Using equation (C-9b)

T(0) = K

The solution to T(t) has now been reduced to a summation of products of scalar ex-

ponentials with the constituent idempotents of L and the matrix K defined.

T(t) = T(0)

3 k .0(t)

£.e J
j--1 J

(C-16)
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The eigenvalues, k j, of the matrix L are computed from the defining relation for
the eigenvalues of a square matrix:

LX = kX

which may be rewritten as:

(L - Ik)X = 0

Since this homogeneous equation possesses nontrivial solutions (X _ 0) if and only if

the determinent of the coefficient matrix vanishes, the eigenvalues may be determined

from the characteristic equation:

2 2 2
I(L- IX)I = 0 = k (k2 + I1 + 12 + 13 )

Using the fact that

3

E 12 =
i

i=l
1 the eigenvalues of L are

kl = 0 k2 = i and k3 = -i (C-17)

Since the eigenvalues of L, independent of the orientation of the axis of rotation,

are all distinct, the constituent idempotents associated with each eigenvalue may be

computed from:

3

Xj = "_ (L - kk I)
k =1 kj - k k (C-18)

kCj

The derivation of equation C-18 is presented in Reference C-1". The constituent idem-

potents associated with each eigenvalue (equation C-18) of L are therefore

_1 L2k 1 = O; = + I (C-19a)

1 L 2
X2 = i ; _2 = ---2 ( + iL) (C-19b)

1 (L2 iL) (C-19e)k 3 = -i; 2 3 - 2 -

*Reference C-I Frame, J.S., "Matrix Functions and Applications," Part II

IEEE Spectrum, April 1964 pp 102-108,
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Inserting equations (C-19a, b, c) into equation (C-16) we may write the solution in a
more useful form:

1 (L2 + iL) ei0(t) I 2 -i0(t)T(t) = T(0) [ (L2 + l) - --_-(L - iL) e ]

which upon rearranging terms becomes:

T(t) = T(0) [I + L2 (1 - cos 0(t)) + L sin 0(t) ] (C-20)

As an example of the use of equation (C-20) consider a constant rate of rotation,

_, about the z-body axis with the body axes initially coincident with the inertial axes.

For this case,

_(t) =

11 = 0, 12 = 0, 13 = 1

T(0) = I

Inserting these values into equation (C-20) using equations (C-2) and (C-7) and
collecting terms,

T (t) =

cos (_t) -sin(_t) 0 1
sin (0_t) cos (0_t) 01

B. Solution for Coning Motion

Coning motion can be described by an angular rate vector with sinusoidal com-

ponents of the same frequency and some phase difference along two axes of an orthogonal

triad and an arbitrary constant rate along the third axis. "Classical" coning motion

results when the constant rate component is specified in terms of the amplitude and

frequency of the sinusoidal components such that the triad of body axes returns to its

initial orientation after each cycle of the sinusoidal motion. This motion has an

important part in studies of attitude computational errors due to multiple axis motions
of the flight vehicle. The results contained in this section provide a continuous truth

model for digital simulations of this motion.
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Themotion consideredconsists of equal sinusoidal amplitudes with a ninety degree

phase difference. It may be described by an angular rate vector as follows:

cos_t

It should be stated at this point that the particular order of the components of the rate

vector is arbitrary and any permutation of the components is also amenable to solution

in a manner identical to that to be developed.

In forming the product [ T] [ _ ] of equation (C-l) one finds that the rows of [ T]

are independent and all have the same form; therefore, it is only necessary to solve the

equation for a typical row as the solution for the other rows will be of the same form.
for the ith row therefore:

Til = T _, - T acos _t (C-21a)i2 i3

Ti2 = -Til )' + Ti3 a sin _t (C-21b)

Ti3 = Til acos_t-Ti2asin_t (C-21c)

Starting with equation (C-21c), differentiating once with respect to time and in-
serting (C-21a) and (C-21b), one obtains

T'i3 = -Ti3 2 + _(_ _ _) [Til sin _t + Ti2 cos _t] (C-22)

Differentiating again, using (C-21a) and (C-21b), and collecting terms, one obtains

"Ti3 + [ 2 + (_ _ _)2] Wi3 = 0 (C-23)

The characteristic equation associated with equation (C-23),

X 3 + X [a 2 + (r - _)2] = 0

has three roots,

X 1 = 0 X2, 3 = -vi _a2 + (_- _)2 = _:i_
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which yields a general solution of the form:

Ti3 = A + B cos _ t + C sin _ t (C-24)

where the coefficients A, B and C are evaluated from the initial conditions.

Having obtained the solution for Ti3, we now turn to the solutions for Til and Ti2.

Differentiating equation (C-21a) once and inserting the expressions for Ti2 (equation

C-21b), Ti3 and Ti3, one obtains for Til after collecting terms:

Ti1-- + _2Til = A (_ + ),) _sin_t (C-25)

+B (_/2) (_ + ), + }) sin(_ + _)t

+B (_/2) (_ + )' - _) sin(_ - })t

-C (_/2) (_ + _ + _) cos (_ + _)t

+C (_/2) (_ + _ - _) cos (_ - _)t

Using a similar procedure beginning with equation (C-21b) one obtains for Ti2

"" 2
Ti2 + }, Ti2 = A (_ + y) q cos _t

+B (_/2) (_ + Y + _) cos(_ + _)t

+B (_/2)(_ + _ - _) cos (_ - _)t

+C (_/2) (_ + _ + }) sin(_ + _)t

-C (_/2)(_ + _' - }) sin(_- _)t

(C-26)

The solutions of the homogeneous part of equations (C-25) and (C-26) are identical, with

characteristic equations

2 2
+y =0

_1,2 = -_i_
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Hence the general solutions for Til and Ti2 are given by:

Til = K lcosTt + L lsinTt (C-27)

Ti2 = K 2cos _' t + L 2 sin)/t (C-28)

The particular solution corresponding to the forcing function on the right hand side of

the appropriate equation (C-25) and (C-26) must be added to these solutions to produce

the complete solutions for Til and Ti2.

The particular solutions to equations (C-25)and (C-26) may be found quite easily using

the method of undetermined coefficients. Adding these particular solutions to the

general solutions (equations C-27 and C-28) completes the solution for the i th row for

the case _ _ 0.

Til = KlCOSTt + LlsinTt- A (___) sin_t (C-29)

Ba(_+ _,+ _)+ 8in (_ * Ot
2 ()'2_ (_+ _)2)

Ba(_+ y - _)+ . sin (_ - _)t
2 (y2 _ (_ _ _)2)

cos (_ + _)t

c a(_+ _- })
+ cos(f5- _)t

2 (y2 _(__ _)2)
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Ti2 = K 2cos 1,t + L 2sinTt

+ B_(_+1, + _)

2 (I'2- (_ + _)2)

A_
cos _t

(_-1,)

cos (13 + })t

(C-30)

+

+

2 (12_(__ _)2)

c a(_+ 1,+ _)

2 (y2_ (_+_)2)

c _(_+ 1,-})

2 (12 _ (__ _)2)

cos (_ - _)t

sin (_ + _)t

sin (_ - _)t

Ti3 = A + Bcos _t + Csin _t (C-31)

Where A, B and C are understood to carry the subscript i and are evaluated by

equating the above result to corresponding row in the initial condition matrix

[ TI (t=o)].

Substitution of equations (C-29), (C-30) and (C-31) back into equation (C-1)

yields the additional restriction that

K 1 = K 2 = L 1 = L 2 = 0 for _ # 0
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APPENDIX D

DEVELOPMENT OF THE COMPUTATIONAL ATTITUDE

ERROR PARAMETER

The

(i)

(2)

attitude computations of a strapdown navigator are used to:

resolve the output of the acceleremeters into the navigation or computational
frame and

to resolve the vehicle attitude commands from the computational frame into

the vehicle coordinate system. The attitude error at any time of flight can

be described in terms of small angular misalignments of the mathematical

vehicle (defined by the computed attitude) relative to the actual vehicle (defined

by the reference attitude):

-_1

where x _x'

[Tb I'] = [_b ] computed = [_b ]reference " [Tbb] D-(2)

D-(1)

The error of interest is that encountered in transferring a vector from one coordinate

frame to another. This error in transferring the vector can be defined in terms of _, P

andT :

[A_b] = [_b] computed-['IJb] reference D-(3)

or using equation (D-(2))

O_
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For resoving accelerometer data into the inertial frame, the resulting error vec-
tor takes the form

E }1- I Ib • [ T ] a I D-(5)a = [W ]ref y o - ref

For resolving vehicle commands from the computational frame into the vehicle

frame, the error takes the form

Eo°1= -y o _ [ T ref

-0/ O

• Command D-(6)

Thus, the properties of the total attitude error whose components are a, _ and

(the attitude computational errors) are of extreme interest. The remainder of this

appendix will show that the norm of the attitude error matrix, Equation (D-3), is pro-

portionate to the root-sum-square of the three attitude error angles. The norm of the
attitude error matrix is defined by

Norm=_i_ _, [A cos (i,j)]2 i = E, N, Uj j = x, y, z

where

z_ cos (i, j) = cos (i, j)computed - cos (i, j)reference D-(7)

obtained from

[A Tb ] = [ computed reference
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The substitutionof equation(D-4) into (D-7) yields

Norm = Root-sum-square [ ref 7 o -
-[3 o_

(D-8)

Carrying out the multiplication within the brackets and performing the squaring

and then the summing of the squared elements yields

-I -I -I x I _2 -I -I -INorm = 9'2 [y y + x • ] + [z • z + x x I]

2 -I -I -I I]+ c_ [z z + Y Y - 27_(_I z I) - 2a),(x I z I)

_ 2_(x I " yI)} 1/2 (D-9)

= _f_ (012 + _2 + 72) 1/2

Thus the norm of the attitude error matrix defines the total angular error of the
computational process.
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APPENDIX E

ANALYSISOF CONINGMOTION

A. Introduction

Coning motion, in which two axes of an orthogonal triad experience phase shifted

sinusoidal motion at the same frequency is an extremely important class of multiple-

axis motion in the performance evaluation of inertial systems. This motion has been

observed in single axis vibratory tests of gyros, on centrifuge testing devices, in

gimballed inertial navigators because of their gimballed degrees of freedom, and may

well be applicable to a strapdown system due to vehicle coning motions about pitch, roll

or yaw axes or vibratory modes of the structural member to which the strapdown inertial

measurement unit is mounted. An important characteristic of this motion is the coup-

ling of the sinusoidal rates about the two axes through the mechanical restraint of the

sensors relative to the vehicle that produces a constant rate along the third orthogonal

axis. This property of the motion could lead to unbounded errors in the attitude refer-

ence if the sinusoidal motion is above the bandwidth of the gyros or the computational

process.

The present appendix extends the analysis of this motion on a linearized basis to

a more general case than that contained in Appendix C using an approach similar to the

quaternion method for the solution of the angular equations of motion.

B. Analysis

A rigid body possessing an arbitrary angular motion about a fixed point may, at

anytime, be returned to the position it occupied at time zero by a simple rotation.
That such a rotation about an axis fixed in space exists is ensured by Euler's theorem

of kinematics. The angular components of this rotation tO return the body to its

initial orientation about each of the body axes _ = (q_x' _by, g57, are defined by the
expression developed in Reference E-l:

f t_)i ¢o.1dT+ A.1 ± 2n_r
O

(E-l)

where _. is the time varying angular rate about the ith body axis; A. is the area traced

out by t_is body axis on the surface of a unit sphere centered at thelfixed point (assumed

coincident with the origin of the body ._oordinate system). This area is defined by thet
curve produced by the motion of the i body axis from time zero to the present and is

closed by the rotation 4, that returns the body to its original orientation. A. is the solid1

*Goodman, L.E. & A. R. Robinson, "Effects of Finite Rotations on Gyroscopic

Devices," Journal of Applied Mechanics. June 1958 pp 210-213
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definedby the motion of the i th bodyaxis and _. This solid anglenrovidesangle a means
of evaluating the output of a gyro that has its input axis parallel to the i thbody axis

ft¢_. dT.
O 1

The solid angle A.. must be evaluated as a function of the history of the body
l

motions. With reference to Figure E-I, which illustrates the goemetry of the problem

assmning that at time zero the body frame and the inertial frame were coincident, the

area Az (the same equations can be developed for Ax and Ay)_ may be written as:

A = _c dAz Z

f,t, f,0,
z eo o

sin _d_d0

(E-2)

Defining, 11, 12,,_is3andlas the direction cosines of the axis of the rotation • with respect
to both the body inertial axis. (The direction cosines 11, 12, 13 are the com-
ponents of the normalized eigenvector corresponding to the unit eigenvalue of the matrix

describing the rotation _. ) An expression for _ as a function of the rotation ¢ may be

obtained by applying the law of cosines to the spherical triangle formed by the intersection

of the axis of _, Z and z with the unit sphere.

cos _ = cos 4_ + -£2 (1 - cos ¢) (E-3)
3

For small angles this may be approximated by

2 22 1/2= (11+1)

= (qb2 + 4 2)1/2
Y

¢

Using the small angle approximation, the expression for A
Z

0(t)

h 1 f _2
z = 2 (O) d O

0o

(E-4)

may be written as

(E-5)
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Figure E-1 Geometry of the Solid Angle

which, by the two dimentional Green's theorem, is equivalent to :

t

A i S /' dqby - qb d_____) d Tz = 20 _X_ Y dT
(E-6)

This expression and equation E-1 provide a convenient means of obtaining the gyro out-

put as a function of time, t, from a knowledge of $ (t), where • (t} is simply the rotation

necessary to return the body frame to coincidence with the inertial frame at time (t):

t t

; _ d T=o Z %bZ--1 f(%2 O d4_y-%d_. d%bX)dT'

d r (E-7)
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Differentiating, an expression for rate that would be sensed by the z gyro is obtained 4

d 1 1 d_ x

z dt z 2 x dt 2 dt

Similarly for _ and ¢o :
x y

=d_x_ 1 ¢ d¢_.__z+ _i ¢ --dex
_x dt 2 Y dt 2 z dt

d 1
- _ _ d_ x + 1 _ d_ z

Y dt Y 2 z-- - x--
dt 2 dt

(E-9)

C. Generalized Coning Motion

A rotation • of the form

¢ = (_x sin ¢_2t, _ySin(¢o It - ¢), o)

corresponds to a general form of coning motion. This is shown by using equation E-8

and E-9 to determine the rates along each body axis:

50 =T%,-%, -dt 2 _ _Y dt J
(E-tO)

= (_x cos ¢o2t, _y cos (_lt - ¢), _z)

The resulting rate vector consisting of phase shifted sinusoids along two of the body

axes, is immediately recognized as a general form of coning motion with the z gyro
coning. The rate sensed by the coning gyro is:

c 1

- a _ _ cos t - ¢) sin _2 tz 2 x y 1 (el

1

+- _x _y ¢°2 sin (¢olt - ¢)cos ¢_2t
2
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t_

c 1
= - _ _ [(_2- _i) sin((_i+ _2)t- ¢)z x y

4

+ (_2+ _i)sin((_i- %) t- ¢)]

(E-f1)

This rate produced by coning motion is of considerable interest as the time average of

this rate demonstrates the presence of an unbounded term that introduces an error in

the attitude system when the frequency of the sinusoidal motion producing it, is beyond

the bandwidth of the gyros or the computational process. The attitude computational

process simply does not reconstruct attitude properly as a function of time. The time

average is defined by:

T

_Zc >t lira 1 f (E-12)< = -- co dr
Z

T--_ T o

Substituting Equation E-10 for co and performing the integration yields:
Z

lim o_x O_y _ co2 - col<_>t : T-_
z 4T _ _2 + col

[COS ¢- COS ((col

+ %+%

%-% [cos _ - COS ((co1 + co2) T - _)]}

lim
hence, for col _ co2'

T-_Co

= o

and for col = _2'

+ co2) T - ¢)]

(E-13)

T

limlim co d _" =
O Z

T-_Oo T-_Oo

1
= - Ot (X

x y
2

lira

col/co2 --_ 1

co sin ¢

T

f co dr
O z
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4

Therefore, the time average of this "coning rate" may be written as r

o ( )I¢o = 5 k - 1 - _ _ ¢0 sin ¢
z 2 x y

(E-14)

where k =
¢°1¢_ and 6(k - 1)

2

is the Dirac delta function.

Similarly, the gyros may also experience a random spectrum of angular rate

whose phase relationship may produce coning motion. It is necessary to evaluate this

error (equation E-12) over a spectrum of random angular motions. Such an evaluation

may be made by integrating equation E-14 over frequencies above the gyro bandwidth,

_b_ _ approximating 1/2 c_x ay by the angular rate power spectral density, dp (o_),
¢o

and assuming that

C

<f ¢o t = f <:>t
Z z

¢°b._ ¢°b¢o

do.)

For sin ¢ = 1 (a constant ninety degree phase difference at all frequencies)

oo

Total drift rate = f *
cot_ u_

d¢o (E-15)

The spacial distribution of these sinusoidal inputs is also of interest and the total error

may range from 0 for a random spacial orientation to that expressed in equation (E-15)

above for a fixed orientation during a flight. The peculiarities of the spacial distribu-

tion are a function of the origin or source of the motion that creates the vibratory modes
of the structural member to which the inertial measurement unit is mounted and must be

analyzed individually for each vehicle.
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2. Vibratory Motions

The angular environment in which a strapdown system must operate is composed
of discrete motions and a vibratory environment. The vibratory environment consists

of sinusoidal and random angular motions. The truncation computational error under

a vibratory environment exhibits the same characteristics as observed for discrete

motions, namely, higher order integration schemes offer significant improvements

with regard to increased accuracy and reduced computational frequency relative to

lower order integration schemes.

In analyzing the computational error due to a vibratory environment, the angular

motion that the computational process must follow is that passed on to it by the gyro.

For example, if the vibratory environment is specified at the strapdown sensor package

mounting shelf, the vibratory motion that the computer must process is the specified

environment multiplied by the sensor housing transfer function and the gyro transfer
function.

Analytic and digital simulation studies have been used to derive the error models

for the truncation error under a vibratory environment. The error models obtained by

both approaches agree very well. The determination of the truncation error in a vibra-
tory environment lends itself to an analytic evaluation because the attitude computational

process possesses the property of superposition that has been verified by digital

simulations (see Appendix F. ) Therefore, the error models that were derived for the
discrete inputs discussed in tbe previous section can be readily extended to vibratory

inputs.

The truncation error for a single sinusoidal input about an axis of rotation fixed

with respect to the vehicle can be described (Table IV-I) by:

C = fcka fl bsind (_ff)
C

where k and the exponents of the sinusoidal angular amplitude, and the frequency
ratio, band d, respectively, are dependent upon the order of the integration schemes

(Table IV-I); fc is the number of integrations performed per second; while, f, is the
frequency of the sinusoidal input. For multiple sinusoidal input, the total truncation

error for any integration scheme is given by

m
C =k f _ fib sin

ac n \2f c ]_=1
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Similarly, the truncation error expressed in terms of a total drift rate for a

random input described by a power spectral density, _b (f), can be described by the
equations of Table IV-II derived in Appendix F.

These analytic models agree with the results of digital simulation studies,

differing essentially by a constant (a factor of 3) for all cases in which the compu-

tational frequency was higher than an appreciable portion of the frequency range of

the vibratory input (f >. If ) wherein the random input extended over a region of
frequency from zero _ oo fo" This comparison is shown in Figure IV-15 with the analytic
models adjusted by a factor of three. When the frequency range of the vibratory

input extended beyond that of the computational frequency (f >> f ), the analytic model

yielded an optimistic estimate of the error. This region ho°wevCr is usually not of

interest in a well designed system. The magnitude of the power spectral density

used in this study was 0.55 (rad/sec)-/cps, an extremely large value by orders of

magnitude, compared to flight environment. A large value was employed to emphasize
the truncation error relative to the round-off error.

A similar analytic error model was developed (see Appendix F) for coning

motion caused by a vibratory environment. These models are presented in Table

IV-III. Digital simulation studies to confirm these models were not performed
as it is highly unlikely that coning will occur other than at discrete frequencies

associated with the resonance points of mechanical systems.

TABLE IV-If

COMPUTATIONAL TRUNCATION ERROR FOR ANGULAR VIBRATION

MOTION ABOUT AN AXIS OF ROTATION FIXED WITH RESPECT TO THE VEHICLE

Rectangular Integration Scheme

rf
O

- 117f2r 2f,, sin 2

CR(hr ) =-_-_-j c _ (_) r2

o

2nd Order Runge Kutta _f

C2 - 0.1 2f e sin r
2 r4

16_ fc

4th Order Runge Kuttaf

o4 - 0.05 /2-_- e q2 sin6r

O

dT

dT
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TABLE IV-III

COMPUTATIONALERRORFORRANDOMVIBRATORYCONINGMOTION

Integration Stheme

Rect

f/f <.8
o c

327

27r c o
¢(_df

[/f :..,_
o c
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_ 408 1 f f(_(f)df
27r2 f 2

c

646 1 if3- 2 4 _b (f)
2_ f
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_ 730_ f o _ dl
2 J [

8f
C

1-7-27



These analytic models are conservative estimates of the truncation error due to

coning produced by a random environment since it assumes that: (1) coning occurs

at all frequencies rather than at discrete frequencies that are usually associated with

points of resonances of the mounting shelf or the sensor package attachment structure,

(2) the amplitude of the variable rate components on each axis are always the maxi-

mum values described by the power density spectrum of each frequency, (3) the

phase difference between the two variable rate components is ninety degrees so as

to produce the maximum error, and (4) the spacial orientation of the input vibration

is fixed relative to the vehicle so as to again maximize the error. In actuality, for

the computational error estimated for coning motions to have any meaning or validity,

each particular vehicle and flight environment must be evaluated individually. Once

the environment is known, the analysis is straightforward. If coning does occur at

discrete frequencies, the error is computed by summing the errors at all of the

coning frequencies. If the coning amplitude is random rather than a continuously

maximum value, an average over amplitude and frequency are required. If the

phase angle is different than ninety degrees or a variable, a time average of the sine

of the phase angle becomes a coefficient of the equations of Table IV-III (Appendix E).

Finally, if the spacial orientation of the coning input is random, an integration over

orientation is required.

3. Sensor Associated Errors

In the performance evaluation of a restrained gyro strapdown navigator,

there are a few sensor loop associated errors that .must be analyzed on a system

basis. A system type of analysis is required as the sensor loop errors in more than

one channel combine to distort and change the type of motion that is passed on to

the computer. For example, these errors can change the motion from one of angular

rotation about an axis fixed relative to the vehicle to one of angular rotation about

an axis that is rotating relative to the vehicle. The attitude computational process,

even if it were perfect, cannot undo the error that has been created. Three sensor

loop errors of this type have been analyzed- (1) finite gyro bandwidth, (2) unmatched

gyro loop frequency response between the three gyro loops, and (3} gyro output axis

acceleration sensitivity.

a. Finite Gyro Bandwidth

The finite bandwidth characteristics of the strapdown gyros cause two naviga-

tion errors. First is the attenuation, beyond the bandwidth of the gyro, of the

angular environment applied to the sensor package. This represents true angular

motion of the accelerometer input axes that should be followed by the gyros in order

to correctly resolve the accelerometer outputs into the inertial frame. Second is

the error introduced if vehicle coning motion occurs at frequencies beyond the band-

width of the gyro; the two sinusoidal or variable rate components will be attenuated

by the gyro loops and not seen by the computer while the constant rate component
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(zero frequency)will be passedon to the computer. This results in a drift rate of
the attitude reference equalto the value of the constantrate component. Theerrors
for eachof thesecasesare derived in AppendixG.

The meansquareerror in the system's knowledgeof the orientation of the
accelerometers' input axesdueto the attenuationof the magnitudeof the angular
motionby thefinite bandwidthof the gyro loops is

o0

o _ [1-Gg (j_) ] (jw)2 _b{jco)d_
-00

where G s is the structural transfer function between the gyros and the sensor
package's mounting surface on the vehicle, _ is the random angular rate power

spectral density at the mounting surface and Gg is the gyro loop transfer function.

This mean square angular error contributes an error in the transformation

of the accelerometer outputs from the vehicle to the inertial computational frame.

For a strapdown system this error has components along the roll vehicle axis

of magnitude

2
AF : F'(_-O)

where F is the applied specific force and AF is the resulting error.

The total drift rate due to coning motion beyond the bandwidth of the gyro is

the second error that must be considered. If coning occurs for all frequencies,

the error induced can be described by:
oO

¢_ (drift rate) - 1 f[1-G (j¢o)] 2 (j_)l 2_ir2 g [Gs q5 (¢o)into d_

O

b. Unmatched Gyro Loop Frequency Response

For a triad of restrained gyros whose transfer functions differ slightly, the

application of a sinusoidal angular rake whose axis of rotation is fixed relative to

the sensor package and is noncollinear with the gyro input axes, creates a distortion

of the true angular motion. The processing of this distorted motion by even a per-

fect attitude computation yields an erroneous knowledge of attitude (Appendix G).

The effect of differences in amplitude response between the gyro loops is to

change the magnitude and spacial orientation of the applied rate. However, the true

and distorted motion cause the body to return to its initial orientation periodically

so the error introduced into the knowledge of attitude is also periodic and bounded.
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The effect of differences in phaseresponsecausesanerror that is characterized -

by two parts of different behavior. First, there is a term that introduces a periodic,
but bounded, error in the knowledge of attitude. It is identical in behavior to that

which occurs for amplitude response differences. Secondly, there is the creation of

an error rate vector of constant magnitude whose axis of rotation rotates relative

to the sensor at a constant frequency equal to the frequency of the applied sinusoidal
rate. This erroneous rotating rate vector causes an unbounded attitude error whose

rate of growth is proportional to the phase differences between the loops and the

amplitude of the sinusoidal rates that are passed onto the computer (Appendix G).

c. Gyro Output Axis Acceleration Sensitivity

Single-degree-of-freedom gyros not only measure angular rate about the
input axis, but they are also sensitive to accelerations about the output axes. If

angular accelerations are applied about the output axis of a gyro, an erroneous rate

signal will be created that will be processed by the attitude computations. For a

strapdown IMU that is subjected to a sinusoidal angular rate about an axis parallel to

the input axis of one gyro and the output axis of another gyro, the combined outputs
lead to a divergent error in the knowledge of attitude even with a perfect attitude

computational process. This drift rate in the knowledge of attitude is proportional

to both the output axis inertia to angular momentum ratio Go/H) and the square of

the amplitude of the applied sinusoidal rate (a) ; it is independent of the frequency
of the input motion up to the bandwidth of the gyro (the error model is derived in
Appendix G):

W (deg/hr) - 30.8 Io [_ (deg/see)] 2
H

Beyond the bandwidth of the gyros, this error falls off rapidly due to the loop's

normal attenuation of high frequency signals. This error in gimballed platform systems

is termed output axis coupling. The same name can be carried over into the strapdown

navigator. The error arises because the signal from the gyro whose output axis

is parallel to the siausoidal rate lags the signal output of the gyro whose input axis

it parallel to the sinusoidal rate by ninety degrees at all frequencies and, therefore,

produces a pseudo coning type of motion. The combined effect of the two signals

is to create an angular rate error vector whose magnitude varies with time and

whose axis of rotation rotates with respect to the sensor package at the same fre-
quency as the applied sinusoid.
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B. Free Gyro Attitude Reference System

The computational process for determining attitude using two free gyros, each

possessing a minimum of two readouts, consists of measuring the orientation of the
spin axes of the gyros relative to the vehicle and the formation of the matrix relation-

ship between the spin axes coordinate frame and the vehicle. Initial alignment of the
spin axes with respect to the desired inertial reference allows the navigation system

to determine the orientation of the vehicle relative to inertial space. An example of

this computational process is presented in Table III-III.

Each time that attitude is desired, the orientation of the spin axes in the vehicle
frame is measured anew; therefore, the computation error is associated with each

individual determination of attitude and is not cumulative with time. The computa-

tion errors for free gyro systems are those associated with the reduction of the optical

readout data, which are measurements of lapsed time between crossings of lines in-

scribed on the rotor under the optical readout. When great circles are scribed upon
the rotor, the reduction of the readout data involves square root and trigonometric

functions. The magnitude of the error in these computations is influenced b:_ the

approximations used for the square root and transcendental functions and computer

word length. The latter may be eliminated by using scribe lines that yield output time

intervals that are already trigonometric functions of the vehicle-spin vector orienta-

tion but at the expense of more difficulty in the fabrication of the rotor.

The accuracy in computing trigonometric functions depends upon the form of the
numerical trigonometric approximation, the number of terms used in the numerical

approximation and the computer word length used to implement the numerical process.

Chebyshev approximations of trigonometric functions readily lend themselves to

rapid and accurate computations in digital computers and are widely used in the aero-

space field. Typical approximations of trigonometric and inverse trigonometric func-

tions are approximated by a truncated series expansion. The most commonly used func-

tions are the sine expansion for computing trigonometric functions and the arctangent for
computing inverse trigonometric functions. (The arctangent function is included

because such a function is necessary if Euler attitude angles are to be derived from

free gyros). The Chebyshev approximations provide adequate accuracy for a mini-

mum number of cOmputer operations. The form of the expansions are (Reference 11):

3 5
arc tan X = C1X + C 3 x + C5 x + ... ; -1_< x_< 1

_r 3 5
sin --_-X = C1X + C3 x + C5 x + .... -1_< x< 1
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Figure IV-16 presents the typical behavior of the error in terms of the argument
and tabulates the maximum error as a function of the number of terms in the series.

The number of zero crossings for the arctangent function error is one more than

the number of terms in the series ; for the sine function error the number of zero

crossings is equal to the number of terms in the expansion.

In order to maintain the inherent accuracy of the trigonometric approximations,

a sufficient word length must be employed. The choice of word length must ensure

that the cumulative round-off error in the calculations is less than the approxima-

tion error. The minimum round-off error that can be expected after a series

of calculations is equal to the value of the least significant bit used in the calcula-

tions. Usually the round-off error is larger than this with the error depending

upon the number of operations and the numbers operated upon. To evaluate the error

due to word length, digital simulations were employed. Figure IV-17 depicts the

average error for a four term arctangent approximation (in the regions of maximum

error) as a function of word length. Also shown in this figure is the error predicted

by assuming that the error is equal to the least significant bit employed in the compu-

tations. It is seen for a four term expansion, that four additional bits are required

beyond the number indicated by employing the value of the least significant bit itself

as an error guide.

Also required in the free gyro computations is a square root process. For

typical digital computers, the square root is an available instruction. The usual

error encountered in forming the square root is 2-(n+l)/vr-Xwhere X is the number

whose square root is to be obtained and where n is the value of the least significant

bit of the number used. If a square root instruction is not available, it must be

solved by a computational subroutine. An example of such a process is the Newton-

Raphson iterative method. Figure IV-18 defines the numerical process and pre-

sents the error as a function of word length; the maximum error occurs for values

of numbers near zero. Table IV-IV tabulates the number of iterations required to

converge to the region of the word length error as a function of the magnitude of the

number whose square root is desired. It is seen that the number of iterations is

inversely proportional to the magnitude of the numbers for the range presented.

More iterations are required for lower numbers because the Newton-Raphson method

is based upon the secant approximating the tangent.

Additional computational errors in the solution of the free gyro attitude

equations arise when single sets of optical pickoff data are too noisy to permit

accurate determination of attitude; thus, several sets of measurements must be

taken and smoothed. This requires solution of the equations over a finite time

period, which introduces errors due to vehicle motion. These errors can be reduced

by fitting a polynomial to the angular data over the selected smoothing integral. A

higher order polynomial would reduce the errors at the expense of increased computer

complexity.
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The solution of the free gyro equations involves a matrix inversion for the

[Tinertial
final solution body (t)]. As shown in Table III-III, the inversion would be of

the time variant matrix [T b
spin vector (t)]. Considerations of solution time would

force a compromise of accuracy if this inversion were to be made at the solution

rate necessary for resolving accelerometer data. However, by utilizing the fact

that the body to inertial matrix transformation is orthogonal and its inverse is

equal to its transpose, the final equation of Table I/I-HI can be rewritten as

Tinertialt()] = _ T b [ TI (t=0)] -1 T[
body [L spin vector (t)] spin vector ]

so that only the inverse of the constant matrix [ T I
spin vector (t=0)] need be taken,

which can be done each time that the gyro alignment is obtained either at prelaunch
or in flight by stellar measurements.

TABLE IV-IV

NUMBER OF ITERATIONS FOR CONVERGENCE

X Error

For 22 Bits

.1 5

.2 4

.3 4

.4 4

.5 3

.6 3

.7 3

.8 3

.9 2

1.0 1

• 41 x 10 -5

• 27 x 10 -5

• 26 x 10 -5

12 x 10 -5

11 x 10 -5

24 x 10 -5

15 x 10 -5

18 x 10 -5

15 x 10 -5

1 x 10 -5
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C. Free Accelerometer Reference System

The motion of a free pendulous gyro accelerometer's input axis is caused by

the linear acceleration applied to the vehicle that acts upon the pendulous moment

along the spin axis and thus causes the input axes to precess with respect to inertial

space. The applied acceleration during thrusting phases of flight can be divided
into a constant thrust component and linear random and sinusoidal vibrations. The

computational frequency or aecelerometer transfer rate is governed by the magni-

tude and frequency content of the linear vibrations; the constant thrust component
of acceleration causes a very smooth and easily followed precession rate. Any

significant linear vibration at frequencies beyond that of the accelerometer data
transfer rate results in an angular uncertainty in the knowledge of the accelerometer

input axis and thus an improper resolution of the main thrust acceleration into the

inertial computational frame.

The coordinate transformation error is an unbounded position and velocity

error growing with time for it acts as uncertainty in knowledge of the accelerometer

input axis just as if it were an electrical or mechanical uncertainty within the sensor

itself. It should be treated as such in the analysis of the system's errors.

The motion of the spin and hence the input axes of a free pendulous gyro accel-

erometer is described, with respect to inertial space, by the following vector equa-
tion

d (S)= HP---(SxF)

where the spin axes precess at a given rate for each unit of applied specific force,

F. The magnitude of the accelerometer "scale factor" is determined by the magni-
tude of the pendulous moment (P) and the magnitude of the angular momentum, H.

The mean square angular motion of the input axis in the presence of a linear

e_godic vibratory environment is defined by

6)2. 1 / p 2 _ df27r2 _ ) f2
f

a

where @ is the linear power spectral density expressed in units of S2/cps. Because

the coordinate transformation is performed at a finite rate, the motion of the input

axis will not be precisely followed. The mean square angular error is thus the dif-

ference between the actual motion described by the above equation and the motion

followed by the coordinate transformation process. With the transfer function of the

transformation process indicated by G, the error in knowledge of the orientation of the

input axis is
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fb

2rr 2
f

a

For a linear vibratory input which has a significant amplitude that extends over

a frequency band that is significantly wider than the accelerometer data transfer

frequency, fc, the above equation can be approximated by

fb

2 1 f p 2
CO= 2 Y (-_) _ (f) df

f2
27r f

C

in which the transfer function G is assumed to be unity out to the frequency with
which the transformation is performed, and is zero at all frequencies beyond this

value.

With the specification of the power spectral density of the linear environment
for each mission, the mean uncertainty in input axis orientation can be evaluated

and the resulting error in the measurement of acceleration computed. If the error

is unacceptably large or unnecessarily low, the transformation frequency or the ac-

celerometer scale factor, (P/H), should be suitably modified within the limits per-

mitted by the state-of-the-art.

The transformation frequency requirements dictated by this analysis are inde-

pendent of whether the gyros are free or restrained. If free gyros are employed as

the attitude reference, the acceleration transformation frequency requirements dic-

tate the minimum attitude computational frequency. If restrained gyros are employed

as the attitude reference, the transformation frequency requirements dictate not only

the minimum attitude computation frequency, but also the minimum acceptable band-

width of the gyros. This arises because the attitude computations can only follow
the output of the gyros and thus cannot operate upon the signal attenuated by the band-

width limitations of the gyro. All that increased attitude computational frequency will

provide with gyros of finite bandwidth is a minimization of the error in handling the

signal passed by the gyro.

D. Restrained Accelerometer Reference System

The computational process for the restrained accelerometer system in a manner
similar to free accelerometer systems also creates an uncertainty in accelerometer

input axis orientation due to the finite coordinate transformation rate in the presence
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of a vibratory environment. The environmentOfconcernfor restrained accelerometers
is angular rather than linear. Therestrained accelerometersalso havean additional
error, termed "size effect, " It occurs becausetheaccelerometersare really velocity
meters integrating specific force in the rotating coordinateframe. Thus, any
centrifugal andtangentialaccelerationscausedby rotations of the sensor package
abouta point not coincidentwith the center of the sensorwill result in an equivalent
bias error unlessthe accelerometerdata is resoNedinto the computationalframe
at a rate significantly faster than the angular oscillations.

1. Uncertainty in AceelerometerInput Axis Orientation

The meanssquareangular motion of the accelerometer's input axis in the pres-
enceof the random ergodicangular environment, 4, is definedby

%
2_ ff f2

a

df

Because the coordinate transformation is performed at a finite rate, the motion

of the input axis will not be precisely followed. With the coordinate transformation

transfer function symbolized by G, the mean square angular error is thus defined by

-Y i % 2

2_
a

For an angular vibratory input of significant amplitude extending over a

frequency band beyond the computational frequency, the above equation can be

approximated by

cO = 2_ 2 f2
e

In a manner similar to the free accelerometer, the mean angular error and its

effect on system accuracy can be evaluated and gyro bandwidth and computational re-
quirements selected so as to achieve an acceptable level of error in the overall

system error budget.
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2. Size Effect

The "size effect" error arises because the accelerometers cannot be mounted

in the vehicle such that their center of mass coincides with the vehicle's center of

mass or bending nodal points. The accelerometer in a strapdown system will, there-

fore, sense and integrate in the rotating frame the centripetal and tangential accelera-
tions due to vehicle rotations. These unwanted measurements are cyclic and would

be exactly removed at the end of each period of oscillation if the accelerometers'
outputs were continuously resolved and summed in the computational frame. Be-

cause the accelerometer outputs (the increments of velocity} are summed for a

finite time in the body frame before the data are transferred to the computational

frame, the effects of centripetal and tangential accelerations are not exactly cancelled

when summed in the computational frame.

Digital simulations have been conducted to determine the error for the strapdown

system in transferring the accelerometer data from the body frame to the inertial

computational frame in the presence of angular rotations about a point that is not
coincident with the sensors. A sinusoidal oscillation about an axis parallel to one

body axis and perpendicular to the input axis of two accelerometers was chosen as the
vehicle motion in order to determine the effect of (1) the amplitude and frequency

of motion, (2) the effect of the data transfer frequency to the inertial frame, and

(3) the effect of accelerometer data processing schemes.

If the accelerometer data is resolved into the computational frame at a fre-

quency that is less than the angular motion, the "size effect" error is equal to the

centrifugal acceleration produced by the angular motions. This can be seen by

examining the sensor outputs in the vehicle frame where the X axis in the following

equations is parallel to this moment arm between the sensor package and the axis
of rotation:

vb/tj+l =_RO 2 ¢of2 t sin2o_ft /t j+ 1A t. m (2 +" 4_f )]tj
J

Vby/tj+l / tj+l=R@ _ cos _oft
A tj m f tj

It is observed from the above equations that a term in the AVb equation is unbounded;

as the time difference between tj and tj + 1 increases the remaining terms are os-
cillatory. In the limit, if the accelerometer outputs are never resolved into the

inertial frame, the average acceleration error is then centrifugal acceleration that

can be expressed as

._ AV 1 RO 2 2
At 2 m f
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For extremely fast data processing, the other limit, the sign of the accelerometer

output in the computational frame alternates and the centrifugal and tangential accelera-

tion integrate to zero each cycle.

In Figure IV-19, the data processing error for two schemes is presented for
the transfer of accelerometer data to the inertial frame. The abcissa displays

the size effect error (_') grouped with other terms that permit the data for a variety
of motions to be readily correlated; the ordinate is the ratio of the sinusoidal fre-

quency to the data transfer frequency. The two data processing schemes employed
to resolve the accelerometer data are derived in Appendix B and are simply:

1)resolving the velocity increment into the inertial frame each data sampling cycle,

and 2) using two successive samples of the velocity increments to estimate specific

force as a function of time through a polynomial fitting process, coupling this estimate
of specific force with time with a knowledge of attitude as a function of time to resolve

the data into the computational frame where it is reintegrated to obtain velocity in the
inertial frame.

This figure shows three distinct regions of error as a function of frequency

rates for both data processing schemes. In the first region, the error is extremely

small and is constant, independent of the motion and the data processing scheme. In

this region the errors are due to round-off caused by the computer word length. In

the second region, which can be termed the truncation region, the errors due to the

two schemes diverge, with the higher order data processing scheme having the lower

error. In this region for f/fc < • 5, empirical expressions describing the error
have been developed for each of the data processing schemes:

Second Order Algorithm

 (ft/sec2): 2,
C

Fourth Order Algorithm

_'(ft/sec2)= 12R (ft)((_(s_c2(ff---)4

In the final region, f/fc > "5, the computations are carried out at less than
twice the frequency of the motion and the error becomes independent of the data

processing scheme employed. In this region the error is equal to the centrifugal

acceleration:
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V(ft/sec 2) = 2_r2R(ft)(On(rad))2f2(cps)

These empirical equations can readily be extended to a random environment,
for example, the second order schemes, with the assumption

• 2
O. =A-

1

Af
f.+--

1 2

(f)
J

Af
fo --

1 2

_vhere _b (f) is the power spectral density of the angular environment, can be
written as

f
O

2.4fo f2
=_-_- R (f) A df , fo/fc <.5

fc

co

if= _ R (f)A df , fo/fc >.5

O

The radius must be considered a function of frequency because the bending nodal

points of the vehicle structure are frequency dependent. If the vehicle were rigid

(i. e., no structural flexure) the radius would be a constant and could be removed
from under the integral sign. In this form these expressions may be simplified by

integrating by parts once:

f
O

V = " 8R [ f3 fo/f cf 2 _b (f) df , < .5
%C

o(3

=I-R f_
2 q_(f)f df

O

, f/f >.5
O C

/V-#3



E. Position Computation

The position computations consist of numerically integrating the incremental

velocity outputs of the accelerometers (already resolved into the inertial frame)

along with a gravitational acceleration model; a first integration yields velocity,

the second yields position. The position computational error since it is an integra-

tion process is composed of round-off and truncation errors. These computa-

tional errors have been investigated for the fourth order Runge-Kutta integration

scheme for different phases of flight: boost and injection, and orbital navigation.

In each of these flight phases, the computational error induced by the degree of com-

pleteness of the gravitational acceleration model (presented in Appendix B) affects

only the round-off error due to the increased number of numerical operations. This

variation in round-off error with varying gravitational models, however, is extremely

small compared to the round-off error associated with the normal integration opera-

tions.

The position computational errors were evaluated with the aid of a digital

simulation of the sensors and the integration process. The boost error was computed

by constructing a polynomial representation of acceleration during the boost phase that

could be integrated in closed form to yield a reference trajectory. This polynomial

was then integrated and quantized to synthesize the velocity vector output and entered

into the position computations. This information was then processed in the manner

described for computing velocity and position as presented in Appendix B. The com-

puted velocity and positions were then compared with the reference value at boost
termination. For the orbital phases of flight, a spherical gravitational potential was

employed in order to obtain a reference trajectory through a closed-form solution of the

equations of motion. The total orbital navigation error was then determined as
a function of time in a circular orbit with a 100 nautical mile altitude. The digital

simulations yielded the effects of computer word length, integration time interval

and total flight time on navigation accuracy.

1. Boost and Injection

The error at injection was determined using 4th order Runge-Kutta integration

of the linear equations of motion. Figures IV-20 through IV-22 present (for an

injection into a 100 nautical mile orbit) the downrange, altitude and velocity errors,

respectively, as a function of the integration time interval and computer word length.

For the 20- and 24-bit computer word length data in Figure IV-20, the portions of

the curves of negative slope relative to increasing integration time intervals repre-

sent computer round-off error associated with computer word length. The remain-

ing portions of each of the error curves for the 20- and 24-bit computers as well
as the entire curve for the 28-, 32-, and 35-bit computers are the integration scheme

truncation error. These plots demonstrate that precise accuracy can be readily ob-

tained by reducing the integration interval with a corresponding increase in computer

word length.
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In Figure IV-21, the altitude error introducedby the computationalprocess -
is presented. Thepositive-valued errors are dueto computerround-off, the negative
valuesto a combinationof round-off andtruncation. It is observedthat for a given
integration interval, the altitude error decreaseswith increasedcomputerword length
from a round-off error region, passesthrough zero, andincreasesnegativelyinto
thetruncation region asthe word length is increased.

In Figure IV-22, the velocity error is shownto continuouslydecreasewith
anincreasing integration time interval, characteristic of computer round-off in-
dicatingthat the truncation error associatedwith the integration of the gravitational-
inducedaccelerationdid not enter into the errors of the precedingtwofigures; the
error in thesefigures wasentirely dueto round-off plus the truncation error induced
by computingposition from velocity data, not velocity from accelerationdata.

2. Orbital Navigation

Thenavigationerror in orbit dueto the computationalprocess wasdetermined
for a satellite traveling in a circular orbit abouta spherical earth at 100nautical
miles altitude. In addition to investigating the effect of computer integration time
interval andword length, the effect andrelative importanceof the addition andmulti-
plication operationsconductedwithin the computationalprocesswere investigated.

The latter investigationwas conductedbecausethe multiplication operationsare
usedonly to determine incremental changesin position andvelocity, the magnitudes
of whichare small comparedto total position andvelocity; hence, computational
accuracycanbemaintainedwith a smaller computer word lengthfor determining
the incremental changesthancanbeusedfor summingthe changesto the total posi-
tion andvelocity. A computerwith a multiplication word lengthof 22bits was thus
selectedfor the study since it is capableof representing velocity to better than 0.01
fps andincremental position changesto better than1 foot assuminga maximumin-
tegration interval of oneminute. Using a doubleprecision addition operationresulted
in a 44-bit representationof total position andvelocity.

Figures IV-23 throughIV-25 present the position error as a function of the
numberof orbits traveled andas a function of computerword lengthandintegration
time interval. It is seenthat whensmall integration time intervals must be used,
a benefit is derived from the doubleprecision addoperationona basically short
word lengthcomputer.

In eachof thesefigures, the position error is approximatelyproportional
to the numberof orbits for the 22/44 and44/44 computersand approximately
proportional to the squareof the number of orbits for the 30/30 computer. In the
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The truncation errors for these integration schemes were evaluated on a digital
computer in which the rate input to a triad of gyros, the integrating gyros themselves,

the computer and the numerical computational process were simulated (Figure IV-l).
Three particular angular motions from which all vehicle motions can be constructed

by judicious summation were investigated: constant and sinusoidal angular rotations

about an axis noncollinear with any of the sensor input axes and a special case of multiple
axis motion, the classical coning motion. Each of these motions is amenable to a

closed form solution (presented in Appendix C), which was used as the reference against

which the results of the numerical integration processes were compared and the com-
putational error determined.

Coning motion is characterized by a constant component of angular velocity along
an axis in the body frame and sinusoidal out-of-phase components of rate at the same

frequency along two axes of the body that are orthogonal to each other and to the afore-

mentioned constant rate component. The motion is termed coning because the body

axis containing the constant component of angular rate describes a cone in space,

returning each cycle to its initial starting point. This motion, if it occurs or is created

by the vehicle or sensor supporting structure is of significant concern in any inertial

system either gimballed or strapdown. For a strapdown system, if the attitude compu-
tations cannot follow the sinusoidal rate components and properly reconstruct vehicle

attitude, the constant rate component along the third body axis (in the limit) becomes
the drift rate of the attitude computational error.

As part of these studies three different sets of attitude parameters were evaluated:

Euler angles, direction cosines and quaternions. The kinematic angular equations of

motion for each of these parametric sets are presented in Appendix B. Cayley-Klein

parameters and a four-angle Euler system can also be considered and they have prop-
erties similar to quaternions. Studies and digital simulations have been used to

investigate the relative merits of each of these sets of attitude parameters. These
studies show that there is little difference between quaternions and direction cosines.

There is also little difference between both of these attitude parametric sets and the

Euler angle set if the latter does not approach the singularity point equivalent to gimbal

lock or if four Euler angles and suitable "control" logic for the additional Euler angle

are employed. Direction cosines are most widely employed today in strapdown attitude
computations because they are well behaved and are required to resolve data between

coordinate frames. For this reason the majority of the analyses reported herein were

performed using direction cosines as the attitude parameters.

A summary of the results obtained from these digital simulations is presented

in Table IV-I in terms of the analytic models that have been derived for the truncation,

quantization and round-off errors with time as the integration parameter. The truncation

errors are presented for three vehicle motions: constant rates of rotation, sinusoidal

oscillations and coning rotations. In order to aid in the visualization of these results,

the equations in Table IV-I are plotted in Figures IV-6 through IV-10. The computa-
tional error shown in these figures is the derivative of the norm of the attitude error
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TABLE IV-I

ATTITUDE COMPUTATIONAL ERROR SUMMARY

Error Source

and Angular
Motion

Truncation

(Constant Rates)

Truncation

(S inus oidal

Rates)

Truncation

(Coning

f/fc > 0.8)

Trtmcation

(Coning

f/fc < 0._)

Quantization

(Coning)

Round-off

(All Motions)

Integration

Scheme

Rectangular

2nd Order Runge-Kutta

4th Order Runge-Kutta

Reetangular

2nd Order l{unge-Kutta

,it h O r(l(,' c Ru ngc - Ku tt :1

Rectangular I
2nd Order Runge-Kutta

4th Order Runge-Kutta

Rectangular

2nd Order Rm_ge-Kutta

,ith Order Rtmgc-Kutta

Rectangular

2nd Order Runge-Kutta

4th Order Runge-Kut*a

Rectangular

2nd Order Runge-Kut-ta

4th Order Runge-Kutta

Error Equations In Terms

Of Drift Rate in deg/hr

3(;. ,5 o_2/re
3 2

0. 133 co'/fe
5 4

(1.62 x JO-6) co /fe
7r

117fl2 fc (sing f/re )2

0.09S5/_4 fc (sin _/2 f/re) 4

0.0535 [_q fc (sin _r/2 f/re )6

327 132 f2/f c

p 2 t':;/f 2108 c

(;l_ fl 2 f5/fc4

,) ,)

k _rQ" /5 f"/fe

(2.1 x 10 .5 ) 2 -rife

SYMBO IN

fc =

Angular velocity in deg/sec

Computational frequency in cps

/? -:: Angular amplitude in deg

f = Frequency of input motion in cps

Q :: Quantization levcl in arc seconds

n = least significant 1)it of the tot'd direction cosine
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matrix, C, in degrees per hour, times the integration step size in seconds. This product

is also the computational error per integration step expressed in units of arc-seconds.

The abcissa is expressed as a function of the ratio of angular motion frequency to the

computational frequency. Note that these figures are log-log plots of the error.

In Figures IV-6 and IV-7 the characteristics of the truncation and bandwidth

limited regions are shown for constant and angular rates and coning. When the compu-

tational frequency is higher than the angular motion frequency, there are significant

differences in the truncation error as the order of the integration process is decreased.

As the integration frequency decreases and approaches the angular motion frequency,

the errors for various integration schemes approach each other. The error subsequently

becomes independent of the integration scheme and enters the bandwidth limited region

when the computational frequency is less than the angular motion frequency. In the

bandwidth limited region, the error curve presented in these two figures and the error

model in Table IV-1 represent the maximum error envelope in this region; the

magnitude of the error determined from the digital simulations exhibited a high degree

of randomness as a function of frequency ratio in this region, often equal to but never

exceeding the presented curve. For coning motion, the bandwidth limited error curve

is exactly equal to the constant rate component of the coning motion. In these two

figures, the slope of the bandwidth limited error curve is one because the vertical

axis indicates the magnitude of the computational drift rate times the magnitude of the

integration step size; plotting computational drift rate versus the frequency ratio

would reduce the slope of both the truncation and bandwidth limited error curves by

one, i.e., a slope of five would become a slope of four and the error curves would have

the characteristics presented schematically in Figure IV-4.

These two figures demonstrate the significant improvement in computational

accuracy that is obtained in the truncation region using higher order integration

schemes. For a fixed angular motion to integration frequency ratio, the accuracy of

the higher order integration schemes can be orders of magnitude better than the

rectangular integration scheme. Conversely, for a desired level of accuracy, there

are significant decreases in computation frequency requirements when higher order

integration schemes are employed, again orders of magnitude better. Even though

the number of program instructions to be executed per integration step increases

with the order of the integration scheme, the total number of instructions that must

be executed per second for a given level of accuracy decreases with increasing order

of the integration scheme. The number of instructions executed per second, hence

the computer's speed requiremerts, decreases with increasing integration scheme

order because the number of integration steps per second required to achieve a given

level of accuracy decreases faster than the number of instructions per integration

step increases.

In Figure IV-8 the truncation error for different amplitudes and frequencies of

sinusoidal input motion are shown for both rectangular and fourth order integration

schemes. This figure again demonstrates the significant reduction in truncation error
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achieved by increasing the order of the integration scheme. The basic difference

in the functional behavior of the computational error for sinusoidal motion from that

of other motions, is that there is not equivalent bandwidth limited region. As the

integration frequency decreases so as to approach the angular motion frequency, the

truncation error increases until the integration frequency is less than the angular
motion frequency, whereupon the truncation error decreases. This behavior of the

truncation error with frequency ratio is observed in Figure IV-8 by noting that the

correlation of the error is made upon the sine of the frequency ratio which is periodic.

It can be seen that the maximum value for the first derivative of the norm is finite;

it occurs at odd multiples of the input motion to the computational frequency ratio; it is

less than the maximum value at all other values of the frequency ratio, and is zero
at even multiples of the frequency ratio.

The actual truncation errors obtained for sinusoidal environments differ slightly

from the error models presented in Table IV-1 and the plots in Figure IV-8. The

error models presented are simplifications of more complex models but they are conser-

vative and are of sufficient accuracy for computational design purposes for all missions

and flight environments of interest. First, for values of sin ( _ f_/fc) between 0.2 and
1, the truncation error for sinusoidal motions differs by the deviation factor shown in
Figure IV-ll for the fourth order scheme. It multiplies the entire error model

presented in Table IV-I. A similar factor is obtained for the other integration schemes.

Inasmuch as the deviation factor is appreciable only in regions where the computational

drift rates are unacceptably high and because the factor represents an attenuation of
the computational error, it is sufficient for design purposes to neglect this factor. The

second difference is that for the rectangular integration of sinusoidal motions, the

higher derivatives of the norm are nonzero. They need only be considered however

for: (1) long duration computational intervals during which the attitude matrix is not

updated by external means, (2) large angular amplitudes, and (3) for large values of

the frequency ratio (f/fc). For frequency ratios (f/fc) between zero and unity, the data
from the digital simulations has been correlated into an error model for the rectangular
integration of sinusoidal motions:

3.6 x 10 .-2 a fct; 2fl2 Ic 2C=468_ e _=Tr ( )

For values of f/fc less than one, this equation reduces to the error model given in

Table IV-I when sin (_/2 x f/fc) is approximated by (_/2 x f/fc)" For frequency

ratios greater than unity, the data has not been manipulated to yield an error model;

the periodicity of the truncation error with frequency ratio described by the error
model in Table IV-I is still present along with the exponential growth in the errors

with time at any particular frequency ratio.

The above-described exponential growth of the truncation errors with time for

sinusoidal environments has not however been observed for the higher order schemes, nor
has it been observed for any integration scheme for any other motions.
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The effect of computer word length on the computational accuracy is shown in
Figure IV-9 along with interrelationships of the round-off and truncation errors for

coning motion; the results are identical for all other motions. The word length (11)

referred to in this figure and also in Table IV-I is the value of the least significant
bit used to represent the total direction cosine value (2-n). The calculations of the

incremental changes in direction cosine must be performed with sufficient precision

or word length to make the information contained in this bit location (2-n)meaningful.

For very small values of the ratio of the angular input to the computational frequency,
the round-off error per integration step is a constant that (1) decreases in magnitude

linearly with increased word length and (2) is independent of the order of the integration

scheme, the type of angular motion and the integration step size.

It is shown in Figure IV-9 that for fixed word length and integration step size,

as the frequency ratio is increased the total error for lower order integration schemes

breaks away from the round-off error level prior to the higher order schemes and inter-

cepts the truncation error curve at higher levels of truncation error.

The critical items in determining the word length required for the calculation of

the incremental changes in direction cosines are (1) the magnitude of the incremental

angular rotation at the point of transition from round-off to truncation for the selected

value of round-off error and integration scheme and (2) the dynamic range of the sensor.

The magnitude of the incremental angular rotation at the transition point governs the

number of most significant bits of the total direction cosines required in the incremental

calculations; the magnitude of the dynamic range (the maximum to minimum values of

the sensor output during the integration interval including compensation for determini-

stic sensor errors) governs the number of bits required to represent the value of the

gyro output (AO) in the incremental calculations.

The number of bits required to represent the direction cosine in the incremental

cosine calculations is theoretically the difference between the number of bits selected

to represent the total direction cosines and the magnitude of the maximum angular

increment at the point of transition from round-off to truncation. An example of this
would be the selection of a least significant bit of the total direction cosine of 2 -27 and

the selectionqOf an integration scheme whose truncation error left the round-off error
at a z_O of 2 -radians. The predicted word length of the direction cosines for the
incremental calculations would be 18 bits. Figure IV-12 demonstrates the results of

the digital simulation study used to confirm this analysis. These curves are for 2 -27

accuracy in the total direction cosine and varying AO at the error transition point

(covering various integration schemes and integration intervals of interest). It is

shown in this figure that required direction cosine word length in the incremental
calculations is less than the number of bits representing the total direction cosine.

These curves become asymptomatic to a line having a slope of minus 2 and indeed this

asymtote intersects the round-off level (1.5 x 10 -3 arc-second) at the predicted values.

In practice, an additional bit is required to minimize the error.
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Figure IV-10 now adds the effect of sensor quantization to that of round-off and

truncation; second and fourth order integration of a coning environment without quantiza-

tion and with different levels of quantization are presented. The quantization error is

seen to modify the transition region between round-off and truncations. The quantization

error is obtained by taking the difference between identical runs with and without quanti-

zation. The results of this evaluation procedure are presented in Figure IV-13, which

shows the quantization error per integration step, C, to be independent of the integration

scheme and proportional to the amplitude and the frequency of the motion, the size of the

integration interval (_) and the quantization level itself. This error may be expressed

as:

Qa
= k --0--- (f/_c) (+ O2 _)

The scatter in the data is due to the fact that this error is a small part of the total error.

This scatter makes an accurate evaluation of (k) and (a) difficult; a mean value estimate of

the exponent (a) is 2. In order to achieve the accuracy benefits of the higher order integra-

tion schemes in the truncation region, smaller levels of sensor quantization are required

compared to the levels required for lower order schemes. Quantization, however, is

not an important error source because pulse torquing schemes capable of quantizing

data to an arc sec or less have been developed.

For some applications it may be desirable to use an incremental data processor

(DDA) rather than a whole number general purpose computer. In these applica-

tions, the angular rotation of the vehicle is logically used as the independent integra-

tion parameter rather than time. Each sensor pulse or a fixed number of pulses is

allowed to accumulate until a specified level is reached, at which time an integration

step is performed. Since the multiplications in the angular motion difference equations

are between direction cosines and the incremental angular change, only additions or

subtractions need be performed because the angular change is always constant.

Figure IV-14 compares the errors of a DDA approach with that of a whole number

computer for both rectangular and second order integration processes. All systems in

this figure are sized to handle a maximum rate of 25 degrees per second. At the point

of maximum angular rate, the error of the incremental and whole number computational

processes are equal. At angular rates below the maximum, the error associated with

the whole number computer decreases at a faster rate than that of the incremental com-

puter. This can also be seen in Table IV-I when the integration parameter for rectangular

integration of constant rates is changed from (At) to (_At). Figure IV-14 demonstrates

the accuracy improvements to be gained for both the incremental and whole number

computational processes with higher order integration schemes. There are no funda-

mental limitations to prevent the use of higher order integration schemes in a DDA,

only hardware limitations when it comes to implementation. The accuracy penalty

encountered with a DDA is a computational error that at times other than the maximum

rate input will yield larger errors than would occur using time as the independent

integration parameter.
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11. INTRODUCTION

The function of an inertial navigator is to indicate the attitude, the velocity

and the position of a vehicle with respect to a selected computational frame using

information obtained from on-board inertial instruments. A strapdown navigator

is characterized by gyros and accelerometers that are directly attached to the
vehicle. The sensor's measurements of linear and angular motion of the vehicle

relative to inertial space are expressed in vehicle coordinates. It is necessary in

a strapdown navigator that the gyro outputs be used to numerically compute the

attitude of the vehicle relative to inertial space and that the computed attitude be

used to resolve the accelerometer outputs into the inertial frame where they are

doubly integrated along with a gravitational model to yield vehicle position. These

strapdown computational functions are schematically shown in Figure II-1. In this

same figure, the functional operation of a gimbal navigator is also presented for
comparison.

The kinematic equations that must be solved by any inertial guidance system
are:

_[TIs (t)] = [TI s (t)] .[_2(t)] (Attitude Computations) (II-l)

I [ ]_(t) = T Is (t) . F (t) (Coordinate Transformation) (11-2)

t

i i /li i I  i3)_(t) = V + F(t)- g (R) dt (Velocity and
0

0

t Position
I I

R (t) = R +J V(t) dt Computations) (11-4)O

For simplicity these kinematic equations have been expressed in an inertial computa-

tion frame. A 3 x 3 matrix, [TI], is used to define the orientation of the sensor read-

out coordinate system relative to the computational inertial frame. The elements of
the skew-symmetric matrix, [_2] ,are the components of the angular rate of the vehicle

sensor readout frame relative to the inertial frame expressed in the sensor readout

frame. F, g, V and R denote, respectively specific force, gravitational acceleration,

velocity and position. Section VI presents a list of symbols used in this report.
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For a strapdown navigator, the orientation of the sensor frame relative to

the computational frame is nondeterministic and time variant and must therefore be

explicitly computed in flight starting with an initial knowledge of attitude. In contrast

to a strapdown mechanization, there is a gimballed or platform inertial navigator

whose functional mechanization is described in Figure II-1. In the gimballed

mechanization, the gyros and accelerometers are mounted on a member, commonly

termed a sensor cluster, that is suspended from the vehicle by a gimbal structure.

The outputs of the gyros are used as error signals for a gimbal drive or control

system to null out all ang_alar motions of the sensor cluster. This control system

is designed to isolate the sensor member from all vehicle angular motion thus

maintaining the initial attitude of the accelerometers relative to inertial space. This

maintains [T_] in equation (II-1) at a predetermined value and results in the accelerom-

eter outputs being directly available in an inertial frame for the position computations.

The significant difference between strapdown and gimballed navigators is

the use of gyros in a strapdown system to measure absolute attitude or the absolute

change in attitude in contrast to a gimballed system in which the gyros are used as

nulling sensors. This results in the replacement of the electromechanical gimbal

support and drive system of the gimballed mechanization by a numerical computational
process implemented in the digital computer for the strapdown system.

After the accelerometer data of the strapdown navigator are resolved into the

computational frame, the position computations for it and a gimballed system are

identical. The linear equations of motion including a model of any force fields

acting upon the vehicle are numerically integrated, once to obtain velocity and
a second time to obtain position.

A. Commonality of Sensor Mechanizations

The design and analysis of the strapdown computational process is greatly

simplified by the fact that the computational process can be separated to a large
extent from specific sensor mechanizations. The effects of the sensors upon the
computational process can be analyzed in terms of the characteristics of the sensor
loop output signal.

Basically, there are two classes of strapdown sensor mechanizations. The

distinction is made entirely upon the angular orientation relationship maintained

between the sensor input axes and the vehicle. One class employs sensors whose
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input axes are maintained fixed relative to the vehicle by a rebalancing feedback
loop. Typical sensors of this class, which are termed restrained sensors are-.

Angular Motion Sensors Rate or Rate Integrating Gyros

Single Axis Platforms

Restrained Pendulous Integrating

Gyro Accelerometers

"Paired Accelerometers"

Linear Motion Sensors Force or Torque Rebalanced
Pendulous Accelerometers

Restrained Pendulous Integrating

Gyro Accelerometers

Free Gyro Centering Force

Measurements

The output of a restrained gyro commonly used in strapdown systems is the

integral of the component of vehicle angular rate (relative to inertial space) that

is projected onto the sensor's input axis. Restrained gyros require the numerical

integration of the angular kinematic equation (equation II-1). The output of a restrained
accelerometer is the integral of the component of specific force relative to inertial

space projected onto the sensor's input axis.

The second class of sensor mechanization employs sensors whose input axes

are unrestrained or free of the vehicle. Sensors of this class, which are termed
"free sensors", are:

Angular Motion Sensors Free Gyros

Linear Motion Sensors Free Pendulous Gyro
Accelerometers

The output of free gyros are trigonometric functions of the angular orientation

of the vehicle relative to inertial space and allow a solution to the angular kinematic

equations directly without the employment of a numerical integration process. The

output of a free pendulous gyro accelerometer is the integral of specific force

relative to inertial space but integrated in a rotating sensor frame, namely, the
suspended sphere or rotor. The integral is obtained in the vehicle frame and must

be resolved into the inertial frame.
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These sensor mechanizations are described in References 1 through 4 and

briefly discussed in Appendix A. Examples of the data processing equations that

can be used to compute attitude for both restrained and free gyros are presented

in Appendix B. Similarly, data processing equations required to transfer the

accelerometer outputs into the inertial frame for restrained and free accelerometers

are also presented in Appendix B. In considering the design of a strapdown navigator

for particular mission applications, it is not necessary to use free gyros with free

accelerometers nor restrained gyros with restrained accelerometers; any mixture

can be employed, depending upon sensor capability and mission requirements.

Within the restrained sensor mechanization class, only four parameters are

required to describe or characterize the sensor's data outputs to the computer.
These parameters are:

lo Frequency response of the sensor loop, which characterizes the

possible frequency content of the sensor output signal that the
computational process must follow.

2. Rate or frequency at which data is available to the computer

(the sensor output is usually a finite frequency digital output).

3. Resolution or smallest value of the sensor output.

4. Maximum magnitude of the sensor output between sampling times.

For the free sensor mechanization, the following parameters are needed to
characterize the signal output-

1. Specific trigonometric outputs of the sensors.

2. Rate or frequency with which the sensor can be meaningfully sampled.

3. Resolution associated with the readout design.
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B. Study Objectives and Report Organization

The objective of the study reported upon herein is to define and to develop

the techniques for evaluating the computational problems, the computational require-

ments and the computational accuracy associated with strapdown navigators. Included
as areas of concern are the following:

1. Different types of inertial sensor and computer mechanizations.

2. Inertial sensor readout characteristics.

o Computational requirements to implement sensor utilization techniques

by which strapdown mission flexibility, accuracy and reliability can
be increased.

The subsequent sections of this report present an analysis of the strapdown

computational accuracy as effected by the numerical algorithms, the flight environ-

ment and critical computer hardware and inertial sensor characteristics. Section

HI presents a functional evaluation of the computational requirements and the

sensor/computer/flight environment interrelationships. Section IV summarizes

the quantitative analyses of the computational errors that have been performed with

the aid of detailed digital simulation studies of the strapdown hardware and software.

All error sources are evaluated and analytical error models are presented. Section

V presents hardware application studies that have been performed in order to improve
the mission flexibility, accuracy and reliability of strapdown navigators. Section VI

presents the results of the study performed to define the computational requirements

in the initial phase of a space mission-launch through transplanetary trajectory injection.
Appendices A through G present the detailed analyses and mathematical derivations to

supplement the discussion in the main body of this report.
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liT. FUNCTIONAL EVALUATION OF COMPUTATIONAL REQUIREMENTS

This section establishes, by functional analysis, the significant parameters

that must be considered in the design or performance analysis of a strapdown
navigator that uses either class of sensor mechanization; free or restrained. The

functional analysis is developed by an inspection of the equations that must be solved

and a consideration of the forcing functions that create an ideal sensor output. Table

17I-I defines specific terms that will be frequently used in this and later sections.

The most critical computational problem for strapdown navigators occurs

during thrusting phases of flight. The problem is the joint process of maintaining

knowledge of the orientation of the accelerometer sensitive axes with respect to

inertial space and resolving the outputs of the accelerometers into the inertial

computational frame. The process of using the resolved accelerometer data in

conjunction with a mathematical gravitational acceleration model to determine

velocity and position is at least an order of magnitude less critical with regard

to the demands placed upon the computer. The requirements are less severe

because the computations are performed in a stabilized frame of reference wherein

all that must be followed are the low frequency variations of the position and velocity
vectors.

In the following sections the functional requirements for the three computational

functions (attitude computation, resolving the accelerometer data into the computa-

tional frame, and position evaluation) will be presented in reverse order as each can

impose requirements on the preceding computational functions.

A. Position Computations

The basic navigation equations that must be solved to compute inertial position

are equations II-3 and II-4. The selection of the coordinate system (linear, spherical,
cylindrical, etc. ) in which the linear equations of motion are to be integrated for
position tracking, dictates the parameters to be used. This selection is not critical

to the computational accuracy and is usually made on the basis of convenience.

Vehicle position and velocity can be expressed in a number of stationary or

rotating coordinate systems. A rotating frame may be useful in certain situations,

such as orbiting satellites, to minimize computer round-off error. However,

compensation for additional pseudo-specific force terms is necessary to account
for the rotation of the computational frame. The center of the coordinate system is

often chosen to be at the origin of the primary central force field of interest to

simplify the gravity calculation. Trajectory-oriented coordinate systems are some-

times used for powered flight to facilitate implementation of the guidance laws.

Selection of a coordinate system and the linear or angular position and velocity
parameters which describe the motion of the vehicle's center of mass can also be made

to minimize the number of executable computer instructions or program storage

requirements. The effect of all these selections on accuracy is of secondary

importance and poses no critical computational problems.
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Truncation error

Round-off error

Word length

Computational
frequency

Integration interval

Sensor sampling

frequency

Quantization

Sensor loop
bandwidth

Sensor loop
phase angle

TABLE III-I

DEFINITION OF TERMS

the error introduced by the inability of a numerical

integration process to follow or precisely describe
the angular or linear motion of the vehicle as a function

of time.

the error introduced by the use of a finite computer word

length, hence finite precision, to process the sensor data

and to perform the numerical computations.

the number of "bits" or characters used to represent

a number in the computations using a binary numbering

system.

the number of times per second that a "set of equations"

describing a complete function, such as attitude or

position, is solved.

the magnitude or size of the increment across which the

integral equations are solved each integration. If time

is the independent parameter of integration, the integration

interval is the reciprocal of the computational frequency

for the integration process.

the number of times per second that the sensor's outputs
are obtained by the computer.

the resolution or minimum value of the sensor's digital

output.

the frequency of a sinusoidal input at which the amplitude

of the sensor output is 71 per cent (minus 3db) of the

amplitude of the input.

the relative difference in phase between a sinusoidal

input to a sensor and the sinusoidal output of the sensor.
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Independent of the navigation or computational frame selection, either the

accelerometer output data or the gravitational acceleration model, or both, must

be resolved between coordinate frames. This requires knowledge of the values

of the elements of a three-by-three matrix relating the accelerometer's axes to

the computational frame and the elements of another three-by-three matrix relating

the gravitational model to the computational frame. For any selected navigation

frame, one of these matrices may be assumed to be known as a function of time

(many times to reduce the computer program size it is a unit matrix) while the

other is obtained using the output of the gyros, or both may be computed from a

priori information and gyro outputs. In any case, the problem is identical: the

gyro outputs must be used to relate the vehicle orientation to inertial space either

explicitly or implicitly independent of whether or not the navigational computational

frame is inertial. To simplify the presentations in the following sections, an inertial

navigation frame will be assumed. The discussions of the computational functions,
problem areas, requirements and characteristics of the error sources are identical

for any selected computational frame.

B. Accelerometer Data Coordinate Transformation

The transformation of the accelerometer data into the inertial computational
frame can be thought of functionally as the formation of the acceleration vector in

inertial space. The accelerometers supply the magnitude and orientation of the

acceleration vector relative to a rotating frame while the attitude of this rotating

frame relative to inertial space is obtained from the gyro data after suitable

processing. From this statement, two fundamental requirements evolve so as to

permit the accurate measurement of acceleration in the inertial frame:

. The time relationship of the accelerometer outputs and the inertial

attitude of the accelerometer input axes (as derived from the gyros)

to each other must be precisely known.

o The output of the accelerometers should be resolved into the inertial

computational frame at a frequency greater than that associated with

the angular motion of the accelerometer input axes relative to inertial

space.

In the following subsections, the additional requirements peculiar to the

restrained and free accelerometer systems are presented.

1. Restrained Accelerometer System

The computational process for resolving restrained accelerometer outputs

into the inertial frame consists of solving the following vector equation:

F (t)= s (t) F (t) (III-I)
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or its equivalent

f s (t)] . _as (t,}dt (III-2,

The motion of the restrained accelerometer's input axes is caused by the

angular rate applied to the vehicle and enters into the coordinate transformation
T

process through (T_) in the above equations. This angular motion can be divided

into constant angular rates and accelerations, low frequency commanded rotations

and limit cycles, and angular sinusoidal and random vibrations. The computational

frequency or accelerometer transfer rate that must be employed is governed by the

magnitude and frequency content of the angular vibration input and the system accuracy

that is desired. Any angular vibration input of significant angular amplitude at

frequencies beyond that of the accelerometer data transfer rate results in an angular

uncertainty in the knowledge of the accelerometer's input axis and thus an improper

resolution of the main thrust acceleration into the inertial computational frame. The

following sketches describe this computational error.

INPUT RANDOM

ANGULAR RATE

eps

[_ _ frequency

fa, fb - computational frequency

UNCE RTAINTY

IN LOCATION

OF INPUT AXIS

(deg/sec) 2
_ frequency

66-727
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The first sketch describes the vehicle's and the accelerometer input axes'

motion by an angular rate power spectral density. Assuming the existence of

perfect knowledge of attitude is continuously available and sampled periodically to

resolve the accelerometer data into the computational frame, a finite frequency

transformation process would be able to precisely follow the angular motions of the

aceelerometer input axes below the transformation frequency. At angular frequencies

beyond that of the data transformation process, all knowledge of angular motion would

be lost; thus, the main thrust vector would be misresolved into the computational

frame by an angle equal to the angular motions of the input axes at the higher frequencies.

The faster the transformation process, the lower the input axis uncertainty. This is

demonstrated in the second sketch wherein fa denotes a transformation process carried

out at a frequency faster than the transformation process implemented at frequency fb-

Another error that arises for restrained accelerometer mechanizations occurs

because they are actually "velocity meters" which yield the integral of specific

force in the rotating vehicle frame. What is desired is specific force itself

(equation II:I-1) or its integral (equation KI-2) in an inertial frame. It is required

that the accelerometer outputs be differentiated in the rotating frame to obtain specific

force and that the computed specific force be resolved into the inertial frame and then

reintegrated. Methods of differentiating and reintegrating the accelerometer outputs

to obtain different degrees of accuracy based upon polynomial fitting are presented

in Appendix B.

A common example of the error associated with this problem is termed size

effect. Integrating accelerometers when subjected to an angular rotation about any

point that is not coincident with the center of the sensing element, will measure and

integrate the tangential and centrifugal acceleration induced by the magnitude of the
angular rotation and the moment arm between the axis of rotation and the sensor

package. As they are instruments integrating in a rotating frame, the sum of their

output in the vehicle frame indicates a net linear velocity at the end of each cycle

of the angular motion due to the unchanging sign of the centrifugal acceleration. The

error can be minimized and made practically negligible by resolving the accelerometer

outputs into and then integrating them in the inertial computational frame at a frequency

higher than that of the angular motion. Increased accuracy is also achieved by using

higher order techniques (presented in Appendix B) to differentiate and reintegrate the

accelerometer outputs as described above.

2. Free Accelerometer Systems

Free accelerometers are simply free gyros with an unbalanced pendulous

mass along the spin axis. Subjecting such a sensor to a linear acceleration causes

the spin axis to precess relative to inertial space. The equations describing the
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angular motion of the spin axis are presented in Table IH-II. The precession rate

is proportional to the magnitude of specific force; the angle through which the spin

axis precesses is proportional to the integral of specific force. The computational

process for measuring specific force in the inertial frame consists of determining

the orientation of the spin axes of two free accelerometers relative to the vehicle

and resolving these measurements into the inertial computational frame using the

vehicle attitude computed from gyro data. The time differential of the orientation

of the spin axes relative to inertial space can be used in conjunction with the kine-

matic equations presented in Table III-II to obtain specific force as a function of

time. The integration of specific force in the inertial frame can then be performed

to obtain velocity. The coefficient matrix appearing in front of the time derivative

of the spin axes orientation vector simply describes the orientation of the input axes

relative to inertial space as a function of time and thus performs the same functional

task as does the attitude matrix in equations ]]1-1 and 111-2 for restrained accelerometers.

The applied acceleration during thrusting phases of flight that causes precession

of the spin axes can be divided into a constant thrust component and linear random and

sinusoidal vibrations. The computational frequency or accelerometer transfer rate

is governed by the magnitude and frequency content of the linear vibrations; the

constant thrust component of acceleration causes a very smooth and easily followed

precession rate. Any significant linear vibration at frequencies beyond that of the

accelerometer data transfer rate results in an angular uncertainty in the knowledge

of the accelerometers' input axis and an improper resolution of the main thrust

acceleration into the inertial computational frame. The following sketches describe

this computational error.

INPUT RANDOM

LINEAR

AC CELERATION

(g2/cps)

SENSOR

SPIN & INPUT

AXIS MOTION

(deg2/cp s)

frequency

i _ frequency

UNCERTAINTY

IN LOCATION

OF INPUT AXIS

(deg2/cps)

fa> fb
fa, fb - computational frequency

frequency 66-7_9
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The first sketch describes an input random linear acceleration, defined in

terms of a power spectral density, that will cause the free accelerometer's spin

axis to precess through the random angular motions whose amplitude is described
by a power spectral density as a function of frequency in the second sketch. In

exactly an identical manner as described for the restrained accelerometers,

angular motions at frequencies beyond the frequency with which the accelerometer

data is transformed into the computational frame will cause a computational error.

The computational error is the misresolving of the main thrust vector into the

computational frame with an angular error equal to the amplitude of the motion at

frequencies faster than the accelerometer data transfer frequency. The third sketch

describes this angular error for two different data transfer motion frequencies, fa
and fb, where fa is greater than fb- There is also a computational error in following

the precession of the spin axis caused by linear vibratory accelerations whose

frequencies are below that of the computational frequency. The error is a function

of the accuracy with which the orientation of the spin axes are differentiated and then
reintegrated in the kinematic equations of Table HI-II. Just as in the case of

restrained accelerometers, high order, hence more accurate schemes for differen-

tiating and reintegrating these equations can be devised.

The final computational error associated with the free accelerometer system

is due to the measurement uncertainty ( quantization or resolution) of its body mounted

readout system. This resolution error contributes to both an uncertainty in the

orientation of the spin axis and also to an uncertainty in the determination of specific

force by the time differential of the spin axis orientation relative to inertial space.

C. Attitude Computations

The consideration of the accelerometer coordinate transformation requirements

has already placed certain requirements upon the attitude computations during thrust-

ing phases of flight. First, vehicle attitude must be computed and used to resolve

the accelerometer data into the computational frame at a frequency that is compatible

with the angular motion of the accelerometer input axis and the desired system

accuracy. Secondly, the quantization or resolution level of the attitude sensors

must be small and preserved by the attitude computations in order to minimize the

uncertainty in knowledge of the orientation of the accelerometer input axes relative

to inertial space. In the following subsections, the additional requirements peculiar

to the free and restrained gyros are discussed.

1. Free Gyro System

The free gyro serves as an inertial reference by providing a physical

reference (an angular momentum vector) stabilized with respect to inertial space.

Attitude of the vehicle relative to the angular momentum vector is computed by
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inscribing a pattern on the sphere, e.g., a great circle, such that the timing of a
series of lines crossing under an optical pickoff fixed to the vehicle defines the

angle between the spin axis and the pickoff axis. By using a minimum of two pick-

offs the attitude of the spin axis relative to the vehicle can be computed. Two
free gyros whose spin axes are nonparallel are sufficient to define an inertial

reference. A typical computational process is presented in Table ]/I-]II. This

process requires the solution of transcendental equations, square roots, the
product of matrices and a matrix inversion. The computational error associated

with this process is the error in approximating the transcendental functions, the

accuracy of the square root scheme, and the round-off error in executing these

processes. None of these items are a severe limitation to the accuracy of the

required transformation matrix because the computational error is not cumulative

over the duration of the flight; the computational error in forming the transformation

matrix each computational cycle produces an error equivalent to an uncertainty of
the orientation of the accelerometer input axes.

2. Restrained Gyro System

The computational process for determining attitude by using restrained gyros

requires the numerical integration of the angular rate equations (equation II-1),

which use the outputs of gyros which are the integral of the components of angular

rate. The computational error associated with any numerical integration process

is naturally cumulative. The numerical integration process must be properly
designed so as to limit the magnitude of the error to an acceptable level over the

duration of the flight. The degree or order of the numerical integration process,

the size of the integration step and the computer word length used to implement the

procedure must be selected such that the attitude of the vehicle can be computed to

the desired degree of accuracy at any point within the mission. Higher order integra-
tion schemes, small integration step sizes and longer word lengths are known to
yield greater accuracy.

The angular motion that must be followed by the attitude computations is that

"passed" by gyros that are characterized by a finite bandwidth. Any significant

motion of the vehicle that is not followed or "passed" to the computer by the gyros
is classified as a sensor error. Figure III-1 depicts this distinction between the

angular motion input to the computer and the sensor error due to finite bandwidth.

The largest integration step size permitted is set by the tolerable computational error

encountered in either the integration of the angular rate equations or in the computa-
tional frequency requirements of the accelerometer data coordinate transformation

process previously discussed in Section HI B.

One area of extreme importance in the design of the numerical attitude

computational process that must be considered when using restrained gyros is the
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:initial apparent incompatibility between the gyro outputs, the integral of angular

rate, and the knowledge of angular rate that is required by the numerical integration

process (equation II-1). In order to form a proper interface between the sensors

and the integration process, it is necessary (in a restrained gyro system) to extract
estimates of angular rate from the integral of angular rate. This extraction of the

component of the vehicle rate vector sensed by each gyro must be performed with

an accuracy compatible with the accuracy of the intended numerical integration

scheme; otherwise, the accuracy of the solution of the angular equations of motion
will be limited to the accuracy of the scheme by which rate is extracted from its

integral; the lower truncation errors of a higher order integration scheme will not
be obtained.

A method for extracting accurate estimates of angular rate consists of: (1)
using a number of successive gyro samples within an integration interval to evaluate

the coefficients of a polynomial expanded in time that describes the integral of rate

components from each gyro, and (2) differentiating the polynomial to obtain angular

rate as a function of time over the integration interval. Examples of different rate

extraction schemes are presented in Appendix B.

In order to realize the accuracy benefits of high order integration schemes

with their lower truncation errors, it is necessary that the error introduced in

the integration process by the quantization of the gyro outputs be smaller than the

truncation error. The error introduced by quantization is an uncertainty in knowledge

of the magnitude of the angular rotation (by the computer) at any instant of time. The

largest possible error is equal to the least significant bit of the sampled gyro digital

output. This uncertainty is not cumulative with time as the portion of the motion

that is less than the quantization level is stored mechanically by the gyro on its output

axis, and it becomes the initial conditions for the gyro's integration of rate over the

next sampling period. Therefore, the effect of sensor loop quantization is to "phase"

or time shift a small portion of the total angular motion. This error is independent

of the order of the integration scheme and therefore does not preclude the use of
integration schemes higher than rectangular or second order as is often cited in

the literature (References 5 through 10). In the implementation of a restrained gyro
mechanization the quantization level may be so large as to dominate the truncation

error of even a rectangular integration scheme such that the use of higher order
schemes are not warranted.

D. Summary of Parameters Affecting Computational Accuracy

The functional analysis presented in the previous section introduced the

many parameters that are involved in the design and analysis of the strapdown

computational process. The origin of these parameters are the flight environment,

the inertial sensors, the computer in which the computational process is implemented
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and finally the computational process itself. Table ]II-IV summarizes these

parameters. In order to be able to design or analyze strapdown computational
processes and to develop direct and economical techniques for controlling the

magnitude of computational error, it is necessary that precise analytic models

of the computational errors as a function of all these parameters be available.

The analytical models of the computational errors have been derived and are
presented and discussed in Section IV.

TABLE Ill-IV

PARAMETERS AFFECTING STRAPDOWN COMPUTATIONAL ACCURACY

Vehicle Angular & Linear Motion

Amplitude

Frequency
Phase

• Sensor Loop Characteristics

Bandwidth

Data Rate

Quantization

• Computer Hardware

Word Length

Speed

Computational Algorithms

Sensor Data Processing or Filtering

Order of Numerical Integration Schemes

Order of Transendental Approximations

Frequency of Solution

* Extraction of angular rate or specific force from their respective integrals
provided by the inertial sensors
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IV. COMPUTATIONAL ERROR ANALYSIS

For the design or analysis of strapdown computational processes and to develop

techniques for controlling the magnitude of the computational error, it is necessary
that analytic models of the computational errors be available. This section summarizes

the characteristics of the strapdown error sources and presents the analytic models

for each of these errors. These error models immediately imply techniques that can

be used to control the magnitude of the computational error. The analytic models were
established through the use of large scale digital simulations of inertial sensor loops,

airborne digital computers and computational algorithms in a scientific ground computer.
An example of the digital simulation program including the programmable variables

for analyzing the restrained gyro attitude computational errors is presented in Figure IV-1.
With these analytic error models now available, the error models rather than the detailed

simulation programs can be used to analyze computational processes or conversely to
arrive at a design for any given application. These error models can be formulated and

applied in an open loop error analysis technique similar to the technique used throughout

industry to evaluate the navigational errors caused by inertial sensors; a rapid method

for performing the computational error analysis would then be available for use in system

studies and design trade-offs as shown in Figure IV-2.

In the requirements discussion in the preceding section, free gyros were not

associated with free accelerometers nor restrained gyros with restrained accelerom-

eters. It is quite reasonable to entertain from the computational viewpoint, the

mixt_.re of free and restrained sensors depending upon the mission. Further, it is not

necessary to force such a relationship in order to analyze the computational errors.

The only tie between the gyros and accelerometers is the speed and accuracy with which

the accelerometer data must be resolved from the vehicle frame into the inertial frame;

the type of gyro attitude reference is not important. Therefore, in the remainder of

this section the computational errors associated with gyros and accelerometers will

be summarized separately as will be the computational errors of free and restrained

sensors. All the parameters listed in Table III-IV are analyzed and discussed. Further

discussions of the errors and their characteristics are presented in the appendices.

A. Restrained Gyro Attitude Reference System

The computational process for determining vehicle attitude from the output of

restrained gyros requires the numerical integration of a set of differential equations.

The error in this numerical integration process is unbounded, the magnitude of the
attitude error increases with time.

The first fundamental result of the digital simulation studies performed is that

the attitude error due to the computational process can be described by a single

parameter, which is termed the norm. The norm parameter is the root-sum-square
of either the error in each element of the transformation matrix between the true

inertial frame and the computational inertial frame or the error in each of the three
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Euler angles that describe the orientation of the computational inertial frame relative

to the true inertial frame (Appendix D}. The error in orientation between the computa-

tional inertial frame and the true inertial frame is obtained by subtracting the strapdown
computer vehicle attitude relative to the computational inertial frame from the true
vehicle attitude relative to the true inertial frame.

For any input motion and computer characteristics, the error in an element of the

direction cosine matrix between the vehicle and inertial space can be described by a
ramp plus a sinusoidal oscillation whose amplitude increases as a linear function of

time. The frequency of the sinusoidal component of the error is the same as the input
motion frequency. This behavior of the error with time is shown in Figure IV-3. Also

shown in this figure is the behavior of the norm with time. After an initial transient,

the norm of the attitude error matrix is seen to be a linear function increasing with

time. A single parameter that describes the norm is therefore its rate of change with

time which can be expressed in units of degrees per hour. Analyses have shown that
its magnitude and behavior are independent of the orientation of the axis of rotation

relative to the gyro input axes and the orientation of the gyros relative to the computa-

tional coordinate system.

The second fundamental result of these studies is that there are four regions of

computational error that have been termed due to their origin: (1) round-off, (2) quanti-

zation, (3) truncation and (4) bandwidth limited. The functional characteristics of each

of these regions and their relationship to each other are shown in Figure IV-4. In

this figure, the computational error is plotted versus the ratio of angular motion frequency

to computer integration frequency on a log-log plot.

For the case when the frequency of integration is lower than the angular motion

that the computer is attempting to follow, the computer is operating in the bandwidth

limited region on the extreme righthand side of the curve in Figure IV-4. The error

in this region is independent of all computational and computer characteristics. As

the computer integration frequency is increased relative to the angular motion frequency,

the computational error enters the truncation region.

In the truncation region, the computational error is a function of both the order of

the integration scheme (coupled with a rate extraction scheme of suitable accuracy) and

the ratio of the angular motion frequency to the integration frequency. Increased inte-

gration frequency results in a lower computational error. Increasing the order of the

numerical integration scheme also reduces the computational truncation error by

increasing the slope of the truncation line, pivoting the line about its point of intersection

with the bandwidth limited region. The slope of the truncation line (n) in this figure is

equal to the order of the employed integration scheme; e. g., for a fourth order scheme,

the slope is 4; for rectangular integration scheme, the slope is unity. As the integration

frequency is further increased, the computational error enters the region dominated

by the quantization level (pulse weight) of the gyro loop.

IV-4
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In this quantization region, the computational error is a function of the sensor

quantization level and the ratio of angular motion frequency to integration frequency.

The error is independent of the order of the integration scheme. The slope of the
quantization error line relative to the frequency ratio is unity; the magnitude of the

quantization error at any frequency ratio is proportional to the square of the sensor

quantization level.

As the integration frequency is increased relative to the frequency of the angular

motion, the computational error enters the fourth region round-off. In this region,

the computational error is inversely proportional to both the computational integration

frequency (a slope of minus one) and the computer word length (the addition of another

bit to the computer word length decreases the round-off error by a factor of two).

Figure IV-5 summarizes the four parameters by which the magnitude of the com-

putational error can be controlled: word length, sensor quantization, integration scheme

and integration interval. Because the error and the means by which the magnitude can
be controlled are independent of each other, all four portions of the error curve versus

vehicle angular motion for a particular application can be designed as required and the

total curve shaped during the design to obtain the desired computational performance.

There are no fundamental limitations that place any accuracy restriction on the compu-
tational process; accuracy can only be limited by the state-of-the-art of hardware
capability.

In the following subsections, the detailed analytic models of the computational

errors are presented for both discrete and random motions. In addition, three error

sources are discussed which are associated with a triad of gyros that must be analyzed
on a system basis (three sensors plus the computational process). They yield an

attitude error even for a perfect computational process because of the computer's

processing of erroneous sensor data. The errors considered are: gyro output axis

acceleration sensitivity, unmatched gyro loop frequency response and the finite band-
width of the gyro loop.

1. Discrete Motions

Three self-starting numerical integration schemes of different order accuracy
were considered in the analyses directed towards establishment of the characteristics

of the computational errors for a restrained gyro attitude system: rectangular, 2nd
order Runge-Kutta and 4th order Runge-Kutta. Appendix B presents the numerical

difference process for each of these schemes. A first order accurate extraction of

rate from the gyro outputs is employed with the first and second order schemes; a

second order extraction process presented in Appendix B is used with the fourth order
scheme.
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